These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


215 related items for PubMed ID: 38430785

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Arbuscular mycorrhizal symbiosis-mediated tomato tolerance to drought.
    Chitarra W, Maserti B, Gambino G, Guerrieri E, Balestrini R.
    Plant Signal Behav; 2016 Jul 02; 11(7):e1197468. PubMed ID: 27359066
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Arbuscular mycorrhizal symbiosis mitigates the negative effects of salinity on durum wheat.
    Fileccia V, Ruisi P, Ingraffia R, Giambalvo D, Frenda AS, Martinelli F.
    PLoS One; 2017 Jul 02; 12(9):e0184158. PubMed ID: 28877207
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Arbuscular mycorrhizal fungi mitigate negative effects of combined drought and heat stress on tomato plants.
    Duc NH, Csintalan Z, Posta K.
    Plant Physiol Biochem; 2018 Nov 02; 132():297-307. PubMed ID: 30245343
    [Abstract] [Full Text] [Related]

  • 9. Insights on the Impact of Arbuscular Mycorrhizal Symbiosis on Tomato Tolerance to Water Stress.
    Chitarra W, Pagliarani C, Maserti B, Lumini E, Siciliano I, Cascone P, Schubert A, Gambino G, Balestrini R, Guerrieri E.
    Plant Physiol; 2016 Jun 02; 171(2):1009-23. PubMed ID: 27208301
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Effect of arbuscular mycorrhizal symbiosis on growth and biochemical characteristics of Chinese fir (Cunninghamia lanceolata) seedlings under low phosphorus environment.
    Tian Y, Xu J, Li L, Farooq TH, Ma X, Wu P.
    PeerJ; 2024 Jun 02; 12():e17138. PubMed ID: 38529308
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. The receptor kinase RiSho1 in Rhizophagus irregularis regulates arbuscule development and drought tolerance during arbuscular mycorrhizal symbiosis.
    Wang S, Han L, Ren Y, Hu W, Xie X, Chen H, Tang M.
    New Phytol; 2024 Jun 02; 242(5):2207-2222. PubMed ID: 38481316
    [Abstract] [Full Text] [Related]

  • 16. Arbuscular Mycorrhizal Symbiosis Primes Tolerance to Cucumber Mosaic Virus in Tomato.
    Miozzi L, Vaira AM, Brilli F, Casarin V, Berti M, Ferrandino A, Nerva L, Accotto GP, Lanfranco L.
    Viruses; 2020 Jun 22; 12(6):. PubMed ID: 32580438
    [Abstract] [Full Text] [Related]

  • 17. Co-Inoculation with Arbuscular Mycorrhizal Fungi and Dark Septate Endophytes under Drought Stress: Synergistic or Competitive Effects on Maize Growth, Photosynthesis, Root Hydraulic Properties and Aquaporins?
    Gong M, Bai N, Wang P, Su J, Chang Q, Zhang Q.
    Plants (Basel); 2023 Jul 09; 12(14):. PubMed ID: 37514211
    [Abstract] [Full Text] [Related]

  • 18. Drought stress improved the capacity of Rhizophagus irregularis for inducing the accumulation of oleuropein and mannitol in olive (Olea europaea) roots.
    Mechri B, Tekaya M, Attia F, Hammami M, Chehab H.
    Plant Physiol Biochem; 2020 Nov 09; 156():178-191. PubMed ID: 32961433
    [Abstract] [Full Text] [Related]

  • 19. Beneficial effects of arbuscular mycorrhizae on Cu detoxification in Mimosa pudica L. grown in Cu-polluted soils.
    Quan L, Duan K, Wei Z, Li W, Chen Y, Duan W, Qin C, Shen Z, Xia Y.
    Environ Sci Pollut Res Int; 2023 Feb 09; 30(10):25755-25763. PubMed ID: 36348238
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.