These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


131 related items for PubMed ID: 38431467

  • 1. Nuanced dilute doping strategy enables high-performance GeTe thermoelectrics.
    Zhong J, Yang X, Lyu T, Liang G, Zhang S, Zhang C, Ao W, Liu F, Nan P, Ge B, Hu L.
    Sci Bull (Beijing); 2024 Apr 30; 69(8):1037-1049. PubMed ID: 38431467
    [Abstract] [Full Text] [Related]

  • 2. Achieving Ultralow Lattice Thermal Conductivity and High Thermoelectric Performance in GeTe Alloys via Introducing Cu2Te Nanocrystals and Resonant Level Doping.
    Zhang Q, Ti Z, Zhu Y, Zhang Y, Cao Y, Li S, Wang M, Li D, Zou B, Hou Y, Wang P, Tang G.
    ACS Nano; 2021 Dec 28; 15(12):19345-19356. PubMed ID: 34734696
    [Abstract] [Full Text] [Related]

  • 3. Boosting the Thermoelectric Properties of Ge0.94Sb0.06Te via Trojan Doping for High Output Power.
    Jiang Y, Zhang Y, Wang X, Chen L, Zhang J, Du Y, Xing W, Zhao JT, Li S, Guo K.
    ACS Appl Mater Interfaces; 2024 Oct 23; 16(42):57218-57227. PubMed ID: 39396197
    [Abstract] [Full Text] [Related]

  • 4. Chemistry in Advancing Thermoelectric GeTe Materials.
    Hong M, Chen ZG.
    Acc Chem Res; 2022 Nov 01; 55(21):3178-3190. PubMed ID: 36223096
    [Abstract] [Full Text] [Related]

  • 5. Band and Phonon Engineering for Thermoelectric Enhancements of Rhombohedral GeTe.
    Liu H, Zhang X, Li J, Bu Z, Meng X, Ang R, Li W.
    ACS Appl Mater Interfaces; 2019 Aug 28; 11(34):30756-30762. PubMed ID: 31386339
    [Abstract] [Full Text] [Related]

  • 6. High-Performance GeTe Thermoelectrics in Both Rhombohedral and Cubic Phases.
    Li J, Zhang X, Wang X, Bu Z, Zheng L, Zhou B, Xiong F, Chen Y, Pei Y.
    J Am Chem Soc; 2018 Nov 28; 140(47):16190-16197. PubMed ID: 30360620
    [Abstract] [Full Text] [Related]

  • 7. Enhancing Near-Room-Temperature GeTe Thermoelectrics through In/Pb Co-doping.
    Li J, Hu Q, He S, Tan X, Deng Q, Zhong Y, Zhang F, Ang R.
    ACS Appl Mater Interfaces; 2021 Aug 11; 13(31):37273-37279. PubMed ID: 34319070
    [Abstract] [Full Text] [Related]

  • 8. High Thermoelectric Performance Achieved in Sb-Doped GeTe by Manipulating Carrier Concentration and Nanoscale Twin Grains.
    Li C, Song H, Dai Z, Zhao Z, Liu C, Yang H, Cui C, Miao L.
    Materials (Basel); 2022 Jan 06; 15(2):. PubMed ID: 35057127
    [Abstract] [Full Text] [Related]

  • 9. Rhombohedral to Cubic Conversion of GeTe via MnTe Alloying Leads to Ultralow Thermal Conductivity, Electronic Band Convergence, and High Thermoelectric Performance.
    Zheng Z, Su X, Deng R, Stoumpos C, Xie H, Liu W, Yan Y, Hao S, Uher C, Wolverton C, Kanatzidis MG, Tang X.
    J Am Chem Soc; 2018 Feb 21; 140(7):2673-2686. PubMed ID: 29350916
    [Abstract] [Full Text] [Related]

  • 10. Vacancy Suppression Induced Synergetic Optimization of Thermoelectric Performance in Sb-Doped GeTe Evidenced by Positron Annihilation Spectroscopy.
    Zhang T, Qi N, Su X, Tang X, Chen Z.
    ACS Appl Mater Interfaces; 2023 Aug 30; 15(34):40665-40675. PubMed ID: 37585556
    [Abstract] [Full Text] [Related]

  • 11. Simultaneous Optimization of Carrier Concentration and Alloy Scattering for Ultrahigh Performance GeTe Thermoelectrics.
    Li J, Chen Z, Zhang X, Yu H, Wu Z, Xie H, Chen Y, Pei Y.
    Adv Sci (Weinh); 2017 Dec 30; 4(12):1700341. PubMed ID: 29270343
    [Abstract] [Full Text] [Related]

  • 12. Ultralow Thermal Conductivity, Enhanced Mechanical Stability, and High Thermoelectric Performance in (GeTe)1-2x(SnSe)x(SnS)x.
    Acharyya P, Roychowdhury S, Samanta M, Biswas K.
    J Am Chem Soc; 2020 Nov 20. PubMed ID: 33215495
    [Abstract] [Full Text] [Related]

  • 13. Lattice Softening and Band Convergence in GeTe-Based Alloys for High Thermoelectric Performance.
    Back SY, Cho H, Zhang W, Mori T, Rhyee JS.
    ACS Appl Mater Interfaces; 2024 Sep 04; 16(35):46363-46373. PubMed ID: 39185566
    [Abstract] [Full Text] [Related]

  • 14. Ultralow Lattice Thermal Conductivity and Superhigh Thermoelectric Figure-of-Merit in (Mg, Bi) Co-Doped GeTe.
    Xing T, Zhu C, Song Q, Huang H, Xiao J, Ren D, Shi M, Qiu P, Shi X, Xu F, Chen L.
    Adv Mater; 2021 Apr 04; 33(17):e2008773. PubMed ID: 33760288
    [Abstract] [Full Text] [Related]

  • 15. Ultra-Low Thermal Conductivity and Improved Thermoelectric Performance in Tungsten-Doped GeTe.
    Cai Z, Zheng K, Ma C, Fang Y, Ma Y, Deng Q, Li H.
    Nanomaterials (Basel); 2024 Apr 20; 14(8):. PubMed ID: 38668216
    [Abstract] [Full Text] [Related]

  • 16. Optimizing Electronic Quality Factor toward High-Performance Ge1- x - y Tax Sby Te Thermoelectrics: The Role of Transition Metal Doping.
    Li M, Sun Q, Xu SD, Hong M, Lyu WY, Liu JX, Wang Y, Dargusch M, Zou J, Chen ZG.
    Adv Mater; 2021 Oct 20; 33(40):e2102575. PubMed ID: 34397118
    [Abstract] [Full Text] [Related]

  • 17. Realizing zT of 2.3 in Ge1-x-y Sbx Iny Te via Reducing the Phase-Transition Temperature and Introducing Resonant Energy Doping.
    Hong M, Chen ZG, Yang L, Zou YC, Dargusch MS, Wang H, Zou J.
    Adv Mater; 2018 Mar 20; 30(11):. PubMed ID: 29349887
    [Abstract] [Full Text] [Related]

  • 18. Regulating the Configurational Entropy to Improve the Thermoelectric Properties of (GeTe)1-x(MnZnCdTe3)x Alloys.
    Huang Y, Zhi S, Zhang S, Yao W, Ao W, Zhang C, Liu F, Li J, Hu L.
    Materials (Basel); 2022 Sep 30; 15(19):. PubMed ID: 36234135
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.