These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


150 related items for PubMed ID: 38437202

  • 1. Protein subcellular relocalization and function of duplicated flagellar calcium binding protein genes in honey bee trypanosomatid parasite.
    Yuan X, Kadowaki T.
    PLoS Genet; 2024 Mar; 20(3):e1011195. PubMed ID: 38437202
    [Abstract] [Full Text] [Related]

  • 2. Cell Cycle-Dependent Flagellar Disassembly in a Firebug Trypanosomatid Leptomonas pyrrhocoris.
    He CY, Singh A, Yurchenko V.
    mBio; 2019 Nov 26; 10(6):. PubMed ID: 31772053
    [Abstract] [Full Text] [Related]

  • 3. Aspartyl protease in the secretome of honey bee trypanosomatid parasite contributes to infection of bees.
    Yuan X, Sun J, Kadowaki T.
    Parasit Vectors; 2024 Feb 10; 17(1):60. PubMed ID: 38341595
    [Abstract] [Full Text] [Related]

  • 4. Molecular determinants of ciliary membrane localization of Trypanosoma cruzi flagellar calcium-binding protein.
    Maric D, McGwire BS, Buchanan KT, Olson CL, Emmer BT, Epting CL, Engman DM.
    J Biol Chem; 2011 Sep 23; 286(38):33109-17. PubMed ID: 21784841
    [Abstract] [Full Text] [Related]

  • 5. Homologues of the 24-kDa flagellar Ca(2+)-binding protein gene of Trypanosoma cruzi are present in other members of the Trypanosomatidae family.
    Maldonado RA, Linss J, Thomaz N, Olson CL, Engman DM, Goldenberg S.
    Exp Parasitol; 1997 Jul 23; 86(3):200-5. PubMed ID: 9225770
    [Abstract] [Full Text] [Related]

  • 6. Gene Disruption of Honey Bee Trypanosomatid Parasite, Lotmaria passim, by CRISPR/Cas9 System.
    Liu Q, Lei J, Kadowaki T.
    Front Cell Infect Microbiol; 2019 Jul 23; 9():126. PubMed ID: 31080782
    [Abstract] [Full Text] [Related]

  • 7. Calcium-dependent membrane association of a flagellar calcium sensor does not require calcium binding.
    Maric D, Olson CL, Xu X, Ames JB, Engman DM.
    Mol Biochem Parasitol; 2015 May 23; 201(1):72-75. PubMed ID: 26099941
    [Abstract] [Full Text] [Related]

  • 8. Differential diagnosis of the honey bee trypanosomatids Crithidia mellificae and Lotmaria passim.
    Ravoet J, Schwarz RS, Descamps T, Yañez O, Tozkar CO, Martin-Hernandez R, Bartolomé C, De Smet L, Higes M, Wenseleers T, Schmid-Hempel R, Neumann P, Kadowaki T, Evans JD, de Graaf DC.
    J Invertebr Pathol; 2015 Sep 23; 130():21-7. PubMed ID: 26146231
    [Abstract] [Full Text] [Related]

  • 9. Structural insights into membrane targeting by the flagellar calcium-binding protein (FCaBP), a myristoylated and palmitoylated calcium sensor in Trypanosoma cruzi.
    Wingard JN, Ladner J, Vanarotti M, Fisher AJ, Robinson H, Buchanan KT, Engman DM, Ames JB.
    J Biol Chem; 2008 Aug 22; 283(34):23388-96. PubMed ID: 18559337
    [Abstract] [Full Text] [Related]

  • 10. Phylogenetic analysis of the trypanosomatid parasite Lotmaria passim in honey bees (Apis mellifera) in Poland.
    Iller M, Lipczyńska-Ilczuk K, Sokół R, Borsuk G, Bancerz-Kisiel A.
    J Vet Res; 2024 Mar 22; 68(1):123-127. PubMed ID: 38525230
    [Abstract] [Full Text] [Related]

  • 11. Flagellar protein localization mediated by a calcium-myristoyl/palmitoyl switch mechanism.
    Godsel LM, Engman DM.
    EMBO J; 1999 Apr 15; 18(8):2057-65. PubMed ID: 10205160
    [Abstract] [Full Text] [Related]

  • 12. Identification of calcium binding sites in the trypanosome flagellar calcium-acyl switch protein.
    Maldonado RA, Mirzoeva S, Godsel LM, Lukas TJ, Goldenberg S, Watterson DM, Engman DM.
    Mol Biochem Parasitol; 1999 Jun 25; 101(1-2):61-70. PubMed ID: 10413043
    [Abstract] [Full Text] [Related]

  • 13. A flagellum-specific calcium sensor.
    Buchanan KT, Ames JB, Asfaw SH, Wingard JN, Olson CL, Campana PT, Araújo AP, Engman DM.
    J Biol Chem; 2005 Dec 02; 280(48):40104-11. PubMed ID: 16148003
    [Abstract] [Full Text] [Related]

  • 14. Trypanosomatid parasite dynamically changes the transcriptome during infection and modifies honey bee physiology.
    Liu Q, Lei J, Darby AC, Kadowaki T.
    Commun Biol; 2020 Jan 31; 3(1):51. PubMed ID: 32005933
    [Abstract] [Full Text] [Related]

  • 15. Analysis of honey environmental DNA indicates that the honey bee (Apis mellifera L.) trypanosome parasite Lotmaria passim is widespread in the apiaries of the North of Italy.
    Ribani A, Utzeri VJ, Taurisano V, Galuppi R, Fontanesi L.
    J Invertebr Pathol; 2021 Sep 31; 184():107628. PubMed ID: 34090931
    [Abstract] [Full Text] [Related]

  • 16. Imidacloprid increases the prevalence of the intestinal parasite Lotmaria passim in honey bee workers.
    Erban T, Parizkova K, Sopko B, Talacko P, Markovic M, Jarosova J, Votypka J.
    Sci Total Environ; 2023 Dec 20; 905():166973. PubMed ID: 37699488
    [Abstract] [Full Text] [Related]

  • 17. PCR-specific detection of recently described Lotmaria passim (Trypanosomatidae) in Chilean apiaries.
    Arismendi N, Bruna A, Zapata N, Vargas M.
    J Invertebr Pathol; 2016 Feb 20; 134():1-5. PubMed ID: 26721451
    [Abstract] [Full Text] [Related]

  • 18. A tale of two parasites: Responses of honey bees infected with Nosema ceranae and Lotmaria passim.
    MacInnis CI, Luong LT, Pernal SF.
    Sci Rep; 2023 Dec 18; 13(1):22515. PubMed ID: 38110440
    [Abstract] [Full Text] [Related]

  • 19. Triplex real-time PCR for detection of Crithidia mellificae and Lotmaria passim in honey bees.
    Xu G, Palmer-Young E, Skyrm K, Daly T, Sylvia M, Averill A, Rich S.
    Parasitol Res; 2018 Feb 18; 117(2):623-628. PubMed ID: 29282526
    [Abstract] [Full Text] [Related]

  • 20. Quantitative PCR assessment of Lotmaria passim in Apis mellifera colonies co-infected naturally with Nosema ceranae.
    Vejnovic B, Stevanovic J, Schwarz RS, Aleksic N, Mirilovic M, Jovanovic NM, Stanimirovic Z.
    J Invertebr Pathol; 2018 Jan 18; 151():76-81. PubMed ID: 29113738
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.