These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


132 related items for PubMed ID: 38441328

  • 1. Light Wavelength as a Contributory Factor of Environmental Fitness in the Cyanobacterial Circadian Clock.
    Kawamoto N, Nakanishi S, Shimakawa G.
    Plant Cell Physiol; 2024 May 30; 65(5):798-808. PubMed ID: 38441328
    [Abstract] [Full Text] [Related]

  • 2. Genome-wide fitness assessment during diurnal growth reveals an expanded role of the cyanobacterial circadian clock protein KaiA.
    Welkie DG, Rubin BE, Chang YG, Diamond S, Rifkin SA, LiWang A, Golden SS.
    Proc Natl Acad Sci U S A; 2018 Jul 24; 115(30):E7174-E7183. PubMed ID: 29991601
    [Abstract] [Full Text] [Related]

  • 3. Minimal tool set for a prokaryotic circadian clock.
    Schmelling NM, Lehmann R, Chaudhury P, Beck C, Albers SV, Axmann IM, Wiegard A.
    BMC Evol Biol; 2017 Jul 21; 17(1):169. PubMed ID: 28732467
    [Abstract] [Full Text] [Related]

  • 4. Redox crisis underlies conditional light-dark lethality in cyanobacterial mutants that lack the circadian regulator, RpaA.
    Diamond S, Rubin BE, Shultzaberger RK, Chen Y, Barber CD, Golden SS.
    Proc Natl Acad Sci U S A; 2017 Jan 24; 114(4):E580-E589. PubMed ID: 28074036
    [Abstract] [Full Text] [Related]

  • 5. Analysis of the Fine-Tuning of Cyanobacterial Circadian Phase by Monochromatic Light and Long-Day Conditions.
    Kobayashi T, Obana Y, Kuboi N, Kitayama Y, Hayashi S, Oka M, Wada N, Arita K, Shimizu T, Sato M, Kanaly RA, Kutsuna S.
    Plant Cell Physiol; 2016 Jan 24; 57(1):105-14. PubMed ID: 26578695
    [Abstract] [Full Text] [Related]

  • 6. Sulfite-stress induced functional and structural changes in the complexes of photosystems I and II in a cyanobacterium, Synechococcus elongatus PCC 7942.
    Kobayashi S, Tsuzuki M, Sato N.
    Plant Cell Physiol; 2015 Aug 24; 56(8):1521-32. PubMed ID: 26009593
    [Abstract] [Full Text] [Related]

  • 7. The circadian oscillator in Synechococcus elongatus controls metabolite partitioning during diurnal growth.
    Diamond S, Jun D, Rubin BE, Golden SS.
    Proc Natl Acad Sci U S A; 2015 Apr 14; 112(15):E1916-25. PubMed ID: 25825710
    [Abstract] [Full Text] [Related]

  • 8. Frequency doubling in the cyanobacterial circadian clock.
    Martins BM, Das AK, Antunes L, Locke JC.
    Mol Syst Biol; 2016 Dec 22; 12(12):896. PubMed ID: 28007935
    [Abstract] [Full Text] [Related]

  • 9. Monitoring light/dark association dynamics of multi-protein complexes in cyanobacteria using size exclusion chromatography-based proteomics.
    Guerreiro AC, Penning R, Raaijmakers LM, Axman IM, Heck AJ, Altelaar AF.
    J Proteomics; 2016 Jun 16; 142():33-44. PubMed ID: 27142972
    [Abstract] [Full Text] [Related]

  • 10. A novel mutation in kaiC affects resetting of the cyanobacterial circadian clock.
    Kiyohara YB, Katayama M, Kondo T.
    J Bacteriol; 2005 Apr 16; 187(8):2559-64. PubMed ID: 15805501
    [Abstract] [Full Text] [Related]

  • 11. Mutation of alanine-422 in KaiC leads to a low amplitude of rhythm in the reconstituted cyanobacterial circadian clock.
    Nagata K, Oyama K, Ota A, Azai C, Terauchi K.
    J Gen Appl Microbiol; 2020 Jun 17; 66(2):140-146. PubMed ID: 32224606
    [Abstract] [Full Text] [Related]

  • 12. Hypersensitive photic responses and intact genome-wide transcriptional control without the KaiC phosphorylation cycle in the Synechococcus circadian system.
    Umetani M, Hosokawa N, Kitayama Y, Iwasaki H.
    J Bacteriol; 2014 Feb 17; 196(3):548-55. PubMed ID: 24244001
    [Abstract] [Full Text] [Related]

  • 13. Inactivation of the petE gene encoding plastocyanin causes different photosynthetic responses in cyanobacterium Synechocystis PCC 6803 under light-dark photoperiod and continuous light conditions.
    Wang XQ, Jiang HB, Zhang R, Qiu BS.
    FEMS Microbiol Lett; 2013 Apr 17; 341(2):106-14. PubMed ID: 23397890
    [Abstract] [Full Text] [Related]

  • 14. The circadian clock ensures successful DNA replication in cyanobacteria.
    Liao Y, Rust MJ.
    Proc Natl Acad Sci U S A; 2021 May 18; 118(20):. PubMed ID: 33972427
    [Abstract] [Full Text] [Related]

  • 15. A circadian timing mechanism in the cyanobacteria.
    Williams SB.
    Adv Microb Physiol; 2007 May 18; 52():229-96. PubMed ID: 17027373
    [Abstract] [Full Text] [Related]

  • 16. Characterization of chlorophyll f synthase heterologously produced in Synechococcus sp. PCC 7002.
    Shen G, Canniffe DP, Ho MY, Kurashov V, van der Est A, Golbeck JH, Bryant DA.
    Photosynth Res; 2019 Apr 18; 140(1):77-92. PubMed ID: 30607859
    [Abstract] [Full Text] [Related]

  • 17. Roles for the Synechococcus elongatus RNA-Binding Protein Rbp2 in Regulating the Circadian Clock.
    McKnight BM, Kang S, Le TH, Fang M, Carbonel G, Rodriguez E, Govindarajan S, Albocher-Kedem N, Tran AL, Duncan NR, Amster-Choder O, Golden SS, Cohen SE.
    J Biol Rhythms; 2023 Oct 18; 38(5):447-460. PubMed ID: 37515350
    [Abstract] [Full Text] [Related]

  • 18. KaiC from a cyanobacterium Gloeocapsa sp. PCC 7428 retains functional and structural properties required as the core of circadian clock system.
    Mukaiyama A, Ouyang D, Furuike Y, Akiyama S.
    Int J Biol Macromol; 2019 Jun 15; 131():67-73. PubMed ID: 30857964
    [Abstract] [Full Text] [Related]

  • 19. Diversity of KaiC-based timing systems in marine Cyanobacteria.
    Axmann IM, Hertel S, Wiegard A, Dörrich AK, Wilde A.
    Mar Genomics; 2014 Apr 15; 14():3-16. PubMed ID: 24388874
    [Abstract] [Full Text] [Related]

  • 20. A Specific Single Nucleotide Polymorphism in the ATP Synthase Gene Significantly Improves Environmental Stress Tolerance of Synechococcus elongatus PCC 7942.
    Lou W, Tan X, Song K, Zhang S, Luan G, Li C, Lu X.
    Appl Environ Microbiol; 2018 Sep 15; 84(18):. PubMed ID: 30006407
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.