These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
141 related items for PubMed ID: 38492697
1. Bio-based poly(lactic acid) foams with enhanced mechanical and heat-resistant properties obtained by facilitating stereocomplex crystallization with addition of D-sorbitol. Wang Y, Zou F, Lin M, Xing S, Peng Q, Li G, Liao X. Int J Biol Macromol; 2024 Apr; 265(Pt 1):130902. PubMed ID: 38492697 [Abstract] [Full Text] [Related]
2. High-expansion-ratio PLLA/PDLA/HNT composite foams with good thermally insulating property and enhanced compression performance via supercritical CO2. Wang Y, Guo F, Liao X, Li S, Yan Z, Zou F, Peng Q, Li G. Int J Biol Macromol; 2023 May 01; 236():123961. PubMed ID: 36898452 [Abstract] [Full Text] [Related]
3. Preferential formation of stereocomplex crystals in poly(L-lactic acid)/poly(D-lactic acid) blends by a fullerene nucleator. Chang WW, Niu J, Peng H, Rong W. Int J Biol Macromol; 2023 Dec 31; 253(Pt 5):127230. PubMed ID: 37797850 [Abstract] [Full Text] [Related]
4. Poly(lactic acid) stereocomplexes: A decade of progress. Tsuji H. Adv Drug Deliv Rev; 2016 Dec 15; 107():97-135. PubMed ID: 27125192 [Abstract] [Full Text] [Related]
5. Toward exclusive stereocomplex crystallization of high-molecular-weight poly(L-lactic acid)/poly(D-lactic acid) blends with outstanding heat resistance via incorporating selective nucleating agents. Wang L, Lu J, Zhang P, Su J, Han J. Int J Biol Macromol; 2024 Mar 15; 262(Pt 1):129976. PubMed ID: 38331074 [Abstract] [Full Text] [Related]
6. Promoted formation of stereocomplex in enantiomeric poly(lactic acid)s induced by cellulose nanofibers. Ren Q, Wu M, Weng Z, Zhu X, Li W, Huang P, Wang L, Zheng W, Ohshima M. Carbohydr Polym; 2022 Jan 15; 276():118800. PubMed ID: 34823806 [Abstract] [Full Text] [Related]
7. Recent Advances in Processing of Stereocomplex-Type Polylactide. Bai H, Deng S, Bai D, Zhang Q, Fu Q. Macromol Rapid Commun; 2017 Dec 15; 38(23):. PubMed ID: 28898498 [Abstract] [Full Text] [Related]
8. Toward ultra-tough and heat-resistant biodegradable polylactide/core-shell rubber blends by regulating the distribution of rubber particles with stereocomplex crystallites. Liu H, Zhao Y, Zheng Y, Chen J, Wang J, Gao G, Bai D. Int J Biol Macromol; 2023 Mar 31; 232():123422. PubMed ID: 36708887 [Abstract] [Full Text] [Related]
10. Entirely environment-friendly polylactide composites with outstanding heat resistance and superior mechanical performance fabricated by spunbond technology: Exploring the role of nanofibrillated stereocomplex polylactide crystals. Jalali A, Romero-Diez S, Nofar M, Park CB. Int J Biol Macromol; 2021 Dec 15; 193(Pt B):2210-2220. PubMed ID: 34798187 [Abstract] [Full Text] [Related]
11. Structure Mediation and Properties of Poly(l-lactide)/Poly(d-lactide) Blend Fibers. Yang B, Wang R, Ma HL, Li X, Brünig H, Dong Z, Qi Y, Zhang X. Polymers (Basel); 2018 Dec 06; 10(12):. PubMed ID: 30961279 [Abstract] [Full Text] [Related]
12. Crystallization, rheology and mechanical properties of the blends of poly(l-lactide) with supramolecular polymers based on poly(d-lactide)-poly(ε-caprolactone-co-δ-valerolactone)-poly(d-lactide) triblock copolymers. Jing Z, Li J, Xiao W, Xu H, Hong P, Li Y. RSC Adv; 2019 Aug 19; 9(45):26067-26079. PubMed ID: 35531016 [Abstract] [Full Text] [Related]
13. Stereocomplex formation between enantiomeric poly(lactic acid)s. 12. spherulite growth of low-molecular-weight poly(lactic acid)s from the melt. Tsuji H, Tezuka Y. Biomacromolecules; 2004 Aug 19; 5(4):1181-6. PubMed ID: 15244428 [Abstract] [Full Text] [Related]
14. Enhanced stereocomplex formation of poly(L-lactic acid) and poly(D-lactic acid) in the presence of stereoblock poly(lactic acid). Fukushima K, Chang YH, Kimura Y. Macromol Biosci; 2007 Jun 07; 7(6):829-35. PubMed ID: 17541929 [Abstract] [Full Text] [Related]
15. Relationship between the Stereocomplex Crystallization Behavior and Mechanical Properties of PLLA/PDLA Blends. Park HS, Hong CK. Polymers (Basel); 2021 Jun 02; 13(11):. PubMed ID: 34199577 [Abstract] [Full Text] [Related]
16. Introduction of stereocomplex crystallites of PLA for the solid and microcellular poly(lactide)/poly(butylene adipate-co-terephthalate) blends. Shi X, Qin J, Wang L, Ren L, Rong F, Li D, Wang R, Zhang G. RSC Adv; 2018 Mar 26; 8(22):11850-11861. PubMed ID: 35539374 [Abstract] [Full Text] [Related]
17. Experimental evidence for immiscibility of enantiomeric polymers: Phase separation of high-molecular-weight poly(ʟ-lactide)/poly(ᴅ-lactide) blends and its impact on hindering stereocomplex crystallization. Chen Y, Lan Q. Int J Biol Macromol; 2024 Mar 26; 260(Pt 1):129459. PubMed ID: 38232890 [Abstract] [Full Text] [Related]
18. A green strategy to regulate cellular structure and crystallization of poly(lactic acid) foams based on pre-isothermal cold crystallization and CO2 foaming. Li B, Zhao G, Wang G, Zhang L, Hou J, Gong J. Int J Biol Macromol; 2019 May 15; 129():171-180. PubMed ID: 30735777 [Abstract] [Full Text] [Related]
19. Tailor-Made Dispersion and Distribution of Stereocomplex Crystallites in Poly(l-lactide)/Elastomer Blends toward Largely Enhanced Crystallization Rate and Impact Toughness. Luo Y, Ju Y, Bai H, Liu Z, Zhang Q, Fu Q. J Phys Chem B; 2017 Jun 29; 121(25):6271-6279. PubMed ID: 28587466 [Abstract] [Full Text] [Related]
20. Morphological, thermal, rheological and mechanical properties of poly (butylene carbonate) reinforced by stereocomplex polylactide. Li Y, Han C, Yu Y, Huang D. Int J Biol Macromol; 2019 Sep 15; 137():1169-1178. PubMed ID: 31301391 [Abstract] [Full Text] [Related] Page: [Next] [New Search]