These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
339 related items for PubMed ID: 38501871
1. The acyl-CoA synthetase TgACS1 allows neutral lipid metabolism and extracellular motility in Toxoplasma gondii through relocation via its peroxisomal targeting sequence (PTS) under low nutrient conditions. Charital S, Shunmugam S, Dass S, Alazzi AM, Arnold C-S, Katris NJ, Duley S, Quansah NA, Pierrel F, Govin J, Yamaryo-Botté Y, Botté CY. mBio; 2024 Apr 10; 15(4):e0042724. PubMed ID: 38501871 [Abstract] [Full Text] [Related]
2. Toxoplasma acyl-CoA synthetase TgACS3 is crucial to channel host fatty acids in lipid droplets and for parasite propagation. Dass S, Shunmugam S, Charital S, Duley S, Arnold CS, Katris NJ, Cavaillès P, Cesbron-Delauw MF, Yamaryo-Botté Y, Botté CY. J Lipid Res; 2024 Oct 10; 65(10):100645. PubMed ID: 39306040 [Abstract] [Full Text] [Related]
3. Comprehensive Characterization of Toxoplasma Acyl Coenzyme A-Binding Protein TgACBP2 and Its Critical Role in Parasite Cardiolipin Metabolism. Fu Y, Cui X, Fan S, Liu J, Zhang X, Wu Y, Liu Q. mBio; 2018 Oct 23; 9(5):. PubMed ID: 30352931 [Abstract] [Full Text] [Related]
4. Monitoring of Lipid Fluxes Between Host and Plastid-Bearing Apicomplexan Parasites. Charital S, Lourdel A, Quansah N, Botté CY, Yamaryo-Botté Y. Methods Mol Biol; 2024 Oct 23; 2776():197-204. PubMed ID: 38502506 [Abstract] [Full Text] [Related]
6. Division and Adaptation to Host Environment of Apicomplexan Parasites Depend on Apicoplast Lipid Metabolic Plasticity and Host Organelle Remodeling. Amiar S, Katris NJ, Berry L, Dass S, Duley S, Arnold CS, Shears MJ, Brunet C, Touquet B, McFadden GI, Yamaryo-Botté Y, Botté CY. Cell Rep; 2020 Mar 17; 30(11):3778-3792.e9. PubMed ID: 32187549 [Abstract] [Full Text] [Related]
7. Toxoplasma gondii acyl-lipid metabolism: de novo synthesis from apicoplast-generated fatty acids versus scavenging of host cell precursors. Bisanz C, Bastien O, Grando D, Jouhet J, Maréchal E, Cesbron-Delauw MF. Biochem J; 2006 Feb 15; 394(Pt 1):197-205. PubMed ID: 16246004 [Abstract] [Full Text] [Related]
8. Synergistic roles of acyl-CoA binding protein (ACBP1) and sterol carrier protein 2 (SCP2) in Toxoplasma lipid metabolism. Fu Y, Cui X, Liu J, Zhang X, Zhang H, Yang C, Liu Q. Cell Microbiol; 2019 Mar 15; 21(3):e12970. PubMed ID: 30362657 [Abstract] [Full Text] [Related]
9. Mitochondria Restrict Growth of the Intracellular Parasite Toxoplasma gondii by Limiting Its Uptake of Fatty Acids. Pernas L, Bean C, Boothroyd JC, Scorrano L. Cell Metab; 2018 Apr 03; 27(4):886-897.e4. PubMed ID: 29617646 [Abstract] [Full Text] [Related]
11. The ZIP Code of Vesicle Trafficking in Apicomplexa: SEC1/Munc18 and SNARE Proteins. Bisio H, Chaabene RB, Sabitzki R, Maco B, Marq JB, Gilberger TW, Spielmann T, Soldati-Favre D. mBio; 2020 Oct 20; 11(5):. PubMed ID: 33082261 [Abstract] [Full Text] [Related]
12. Supply and demand-heme synthesis, salvage and utilization by Apicomplexa. Kloehn J, Harding CR, Soldati-Favre D. FEBS J; 2021 Jan 20; 288(2):382-404. PubMed ID: 32530125 [Abstract] [Full Text] [Related]
13. Toxoplasma gondii relies on both host and parasite isoprenoids and can be rendered sensitive to atorvastatin. Li ZH, Ramakrishnan S, Striepen B, Moreno SN. PLoS Pathog; 2013 Jan 20; 9(10):e1003665. PubMed ID: 24146616 [Abstract] [Full Text] [Related]
14. Toxoplasma LIPIN is essential in channeling host lipid fluxes through membrane biogenesis and lipid storage. Dass S, Shunmugam S, Berry L, Arnold CS, Katris NJ, Duley S, Pierrel F, Cesbron-Delauw MF, Yamaryo-Botté Y, Botté CY. Nat Commun; 2021 May 17; 12(1):2813. PubMed ID: 34001876 [Abstract] [Full Text] [Related]
15. The patatin-like phospholipase PfPNPLA2 is involved in the mitochondrial degradation of phosphatidylglycerol during Plasmodium falciparum blood stage development. Shunmugam S, Quansah N, Flammersfeld A, Islam MM, Sassmannshausen J, Bennink S, Yamaryo-Botté Y, Pradel G, Botté CY. Front Cell Infect Microbiol; 2023 May 17; 13():997245. PubMed ID: 38089812 [Abstract] [Full Text] [Related]
16. Profiling of myristoylation in Toxoplasma gondii reveals an N-myristoylated protein important for host cell penetration. Broncel M, Dominicus C, Vigetti L, Nofal SD, Bartlett EJ, Touquet B, Hunt A, Wallbank BA, Federico S, Matthews S, Young JC, Tate EW, Tardieux I, Treeck M. Elife; 2020 Jul 03; 9():. PubMed ID: 32618271 [Abstract] [Full Text] [Related]
17. Characterization of Plasmodium Atg3-Atg8 Interaction Inhibitors Identifies Novel Alternative Mechanisms of Action in Toxoplasma gondii. Varberg JM, LaFavers KA, Arrizabalaga G, Sullivan WJ. Antimicrob Agents Chemother; 2018 Feb 03; 62(2):. PubMed ID: 29158278 [Abstract] [Full Text] [Related]
18. Phosphatidylethanolamine synthesis in the parasite mitochondrion is required for efficient growth but dispensable for survival of Toxoplasma gondii. Hartmann A, Hellmund M, Lucius R, Voelker DR, Gupta N. J Biol Chem; 2014 Mar 07; 289(10):6809-6824. PubMed ID: 24429285 [Abstract] [Full Text] [Related]
19. Role of ATG3 in the parasite Toxoplasma gondii: autophagy in an early branching eukaryote. Besteiro S. Autophagy; 2012 Mar 07; 8(3):435-7. PubMed ID: 22361579 [Abstract] [Full Text] [Related]
20. A Toxoplasma gondii putative amino acid transporter localizes to the plant-like vacuolar compartment and controls parasite extracellular survival and stage differentiation. Piro F, Masci S, Kannan G, Focaia R, Schultz TL, Thaprawat P, Carruthers VB, Di Cristina M. mSphere; 2024 Jan 30; 9(1):e0059723. PubMed ID: 38051073 [Abstract] [Full Text] [Related] Page: [Next] [New Search]