These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Using Graphene Liquid Cell Transmission Electron Microscopy to Study in Situ Nanocrystal Etching. Hauwiller MR, Ondry JC, Alivisatos AP. J Vis Exp; 2018 May 17; (135):. PubMed ID: 29863683 [Abstract] [Full Text] [Related]
3. Gold Nanocrystal Etching as a Means of Probing the Dynamic Chemical Environment in Graphene Liquid Cell Electron Microscopy. Hauwiller MR, Ondry JC, Chan CM, Khandekar P, Yu J, Alivisatos AP. J Am Chem Soc; 2019 Mar 13; 141(10):4428-4437. PubMed ID: 30777753 [Abstract] [Full Text] [Related]
6. Graphene Liquid Cell Electron Microscopy: Progress, Applications, and Perspectives. Park J, Koo K, Noh N, Chang JH, Cheong JY, Dae KS, Park JS, Ji S, Kim ID, Yuk JM. ACS Nano; 2021 Jan 26; 15(1):288-308. PubMed ID: 33395264 [Abstract] [Full Text] [Related]
9. Real-Time Electron Microscopy of Nanocrystal Synthesis, Transformations, and Self-Assembly in Solution. Sutter P, Sutter E. Acc Chem Res; 2021 Jan 05; 54(1):11-21. PubMed ID: 33315389 [Abstract] [Full Text] [Related]
10. 3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy. Chen Q, Smith JM, Park J, Kim K, Ho D, Rasool HI, Zettl A, Alivisatos AP. Nano Lett; 2013 Sep 11; 13(9):4556-61. PubMed ID: 23944844 [Abstract] [Full Text] [Related]
12. Four-Dimensional Scanning Transmission Electron Microscopy (4D-STEM): From Scanning Nanodiffraction to Ptychography and Beyond. Ophus C. Microsc Microanal; 2019 Jun 11; 25(3):563-582. PubMed ID: 31084643 [Abstract] [Full Text] [Related]
13. EELS Studies of Cerium Electrolyte Reveal Substantial Solute Concentration Effects in Graphene Liquid Cells. Crook MF, Moreno-Hernandez IA, Ondry JC, Ciston J, Bustillo KC, Vargas A, Alivisatos AP. J Am Chem Soc; 2023 Mar 29; 145(12):6648-6657. PubMed ID: 36939571 [Abstract] [Full Text] [Related]
14. Training artificial neural networks for precision orientation and strain mapping using 4D electron diffraction datasets. Yuan R, Zhang J, He L, Zuo JM. Ultramicroscopy; 2021 Dec 29; 231():113256. PubMed ID: 33773843 [Abstract] [Full Text] [Related]
15. Machine Learning to Reveal Nanoparticle Dynamics from Liquid-Phase TEM Videos. Yao L, Ou Z, Luo B, Xu C, Chen Q. ACS Cent Sci; 2020 Aug 26; 6(8):1421-1430. PubMed ID: 32875083 [Abstract] [Full Text] [Related]
16. Mapping Nanoscale Electrostatic Field Fluctuations around Graphene Dislocation Cores Using Four-Dimensional Scanning Transmission Electron Microscopy (4D-STEM). Coupin MJ, Wen Y, Lee S, Saxena A, Ophus C, Allen CS, Kirkland AI, Aluru NR, Lee GD, Warner JH. Nano Lett; 2023 Aug 09; 23(15):6807-6814. PubMed ID: 37487233 [Abstract] [Full Text] [Related]
17. Unsupervised machine learning combined with 4D scanning transmission electron microscopy for bimodal nanostructural analysis. Kimoto K, Kikkawa J, Harano K, Cretu O, Shibazaki Y, Uesugi F. Sci Rep; 2024 Feb 05; 14(1):2901. PubMed ID: 38316959 [Abstract] [Full Text] [Related]
18. Elucidating the Role of Halides and Iron during Radiolysis-Driven Oxidative Etching of Gold Nanocrystals Using Liquid Cell Transmission Electron Microscopy and Pulse Radiolysis. Crook MF, Laube C, Moreno-Hernandez IA, Kahnt A, Zahn S, Ondry JC, Liu A, Alivisatos AP. J Am Chem Soc; 2021 Aug 04; 143(30):11703-11713. PubMed ID: 34292703 [Abstract] [Full Text] [Related]
20. Direct Observation of Wet Biological Samples by Graphene Liquid Cell Transmission Electron Microscopy. Park J, Park H, Ercius P, Pegoraro AF, Xu C, Kim JW, Han SH, Weitz DA. Nano Lett; 2015 Jul 08; 15(7):4737-44. PubMed ID: 26065925 [Abstract] [Full Text] [Related] Page: [Next] [New Search]