These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


115 related items for PubMed ID: 38527888

  • 1. Iodine enrichment in the groundwater in South China and its hydrogeochemical control.
    Zhou F, Xu Q, Chen Y, Zhang W, Qiu R.
    J Environ Sci (China); 2024 Aug; 142():226-235. PubMed ID: 38527888
    [Abstract] [Full Text] [Related]

  • 2. Microbial Contributions to Iodide Enrichment in Deep Groundwater in the North China Plain.
    Jiang Z, Huang M, Jiang Y, Dong Y, Shi L, Li J, Wang Y.
    Environ Sci Technol; 2023 Feb 14; 57(6):2625-2635. PubMed ID: 36668684
    [Abstract] [Full Text] [Related]

  • 3. Bacterial Sulfate Reduction Facilitates Iodine Mobilization in the Deep Confined Aquifer of the North China Plain.
    Jiang Z, Qian L, Cui M, Jiang Y, Shi L, Dong Y, Li J, Wang Y.
    Environ Sci Technol; 2023 Oct 10; 57(40):15277-15287. PubMed ID: 37751521
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Iodine mobilization in groundwater system at Datong basin, China: evidence from hydrochemistry and fluorescence characteristics.
    Li J, Wang Y, Guo W, Xie X, Zhang L, Liu Y, Kong S.
    Sci Total Environ; 2014 Jan 15; 468-469():738-45. PubMed ID: 24064343
    [Abstract] [Full Text] [Related]

  • 6. Effects of depositional environment and organic matter degradation on the enrichment and mobilization of iodine in the groundwater of the North China Plain.
    Xue X, Li J, Xie X, Wang Y, Tian X, Chi X, Wang Y.
    Sci Total Environ; 2019 Oct 10; 686():50-62. PubMed ID: 31176823
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Enrichment mechanisms for the co-occurrence of arsenic-fluoride-iodine in the groundwater in different sedimentary environments of the Hetao Basin, China.
    Li Z, Cao W, Ren Y, Pan D, Wang S, Zhi C.
    Sci Total Environ; 2022 Sep 15; 839():156184. PubMed ID: 35623526
    [Abstract] [Full Text] [Related]

  • 9. Sorption and speciation of iodine in groundwater system: The roles of organic matter and organic-mineral complexes.
    Li J, Zhou H, Wang Y, Xie X, Qian K.
    J Contam Hydrol; 2017 Jun 15; 201():39-47. PubMed ID: 28495233
    [Abstract] [Full Text] [Related]

  • 10. Hydrogeochemistry of high iodine groundwater: a case study at the Datong Basin, northern China.
    Li J, Wang Y, Xie X, Zhang L, Guo W.
    Environ Sci Process Impacts; 2013 Apr 15; 15(4):848-59. PubMed ID: 23478640
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X, Ellis A, Wang Y, Xie Z, Duan M, Su C.
    Sci Total Environ; 2009 Jun 01; 407(12):3823-35. PubMed ID: 19344934
    [Abstract] [Full Text] [Related]

  • 13. Coupling hydrogeochemistry and stable isotopes (δ2H, δ18O and δ13C) to identify factors affecting arsenic enrichment of surface water and groundwater in Precambrian sedimentary rocks, eastern salt range, Punjab, Pakistan.
    Javed T, Ahmad N, Ahmad SR.
    Environ Geochem Health; 2023 Aug 01; 45(8):6643-6673. PubMed ID: 37347308
    [Abstract] [Full Text] [Related]

  • 14. Factors controlling iodine enrichment in a coastal plain aquifer in the North Jiangsu Yishusi Plain, China.
    Wei W, Nghiem A, Ma R, Sun Z, Gong X, Zhou A, Prommer H.
    J Contam Hydrol; 2021 Dec 01; 243():103894. PubMed ID: 34628141
    [Abstract] [Full Text] [Related]

  • 15. Fluoride and iodine enrichment in groundwater of North China Plain: Evidences from speciation analysis and geochemical modeling.
    Li J, Zhou H, Qian K, Xie X, Xue X, Yang Y, Wang Y.
    Sci Total Environ; 2017 Nov 15; 598():239-248. PubMed ID: 28441602
    [Abstract] [Full Text] [Related]

  • 16. Radioiodine sorption/desorption and speciation transformation by subsurface sediments from the Hanford Site.
    Xu C, Kaplan DI, Zhang S, Athon M, Ho YF, Li HP, Yeager CM, Schwehr KA, Grandbois R, Wellman D, Santschi PH.
    J Environ Radioact; 2015 Jan 15; 139():43-55. PubMed ID: 25464040
    [Abstract] [Full Text] [Related]

  • 17. Effect and genesis of soil nitrogen loading and hydrogeological conditions on the distribution of shallow groundwater nitrogen pollution in the North China Plain.
    Xia Q, He J, He B, Chu Y, Li W, Sun J, Wen D.
    Water Res; 2023 Sep 01; 243():120346. PubMed ID: 37482006
    [Abstract] [Full Text] [Related]

  • 18. Hydrogeochemical and statistical analysis of high fluoride groundwater in northern China.
    Feng F, Jia Y, Yang Y, Huan H, Lian X, Xu X, Xia F, Han X, Jiang Y.
    Environ Sci Pollut Res Int; 2020 Oct 01; 27(28):34840-34861. PubMed ID: 32638308
    [Abstract] [Full Text] [Related]

  • 19. Distribution, sources, and potential health risks of fluoride, total iodine, and nitrate in rural drinking water sources of North and East China.
    Huang S, Guo J, Xie Y, Bian R, Wang N, Qi W, Liu H.
    Sci Total Environ; 2023 Nov 10; 898():165561. PubMed ID: 37474072
    [Abstract] [Full Text] [Related]

  • 20. Geochemical and Multivariate Statistical Evaluation of Trace Elements in Groundwater of Niğde Municipality, South-Central Turkey: Implications for Arsenic Contamination and Human Health Risks Assessment.
    Çiner F, Sunkari ED, Şenbaş BA.
    Arch Environ Contam Toxicol; 2021 Jan 10; 80(1):164-182. PubMed ID: 32974684
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.