These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


268 related items for PubMed ID: 38529308

  • 21. Positive effects of Funneliformis mosseae inoculation on reed seedlings under water and TiO2 nanoparticles stresses.
    Xu Z, Wu Y, Xiao Z, Ban Y, Belvett N.
    World J Microbiol Biotechnol; 2019 May 27; 35(6):81. PubMed ID: 31134389
    [Abstract] [Full Text] [Related]

  • 22. Microplastics in soil affect the growth and physiological characteristics of Chinese fir and Phoebe bournei seedlings.
    Li Y, Chen Y, Li P, Huang H, Xue K, Cai S, Liao X, Jin S, Zheng D.
    Environ Pollut; 2024 Oct 01; 358():124503. PubMed ID: 38977122
    [Abstract] [Full Text] [Related]

  • 23. Effect of co-inoculation with arbuscular mycorrhizal fungi and phosphate solubilizing fungi on nutrient uptake and photosynthesis of beach palm under salt stress environment.
    Zai XM, Fan JJ, Hao ZP, Liu XM, Zhang WX.
    Sci Rep; 2021 Mar 11; 11(1):5761. PubMed ID: 33707467
    [Abstract] [Full Text] [Related]

  • 24. Revealing the effects and mechanisms of arbuscular mycorrhizal fungi on manganese uptake and detoxification in Rhus chinensis.
    Pan G, Wang W, Li X, Pan D, Liu W.
    Chemosphere; 2023 Oct 11; 339():139768. PubMed ID: 37567258
    [Abstract] [Full Text] [Related]

  • 25. [Effects of heterogeneous distribution of soil resources on the growth of Chinese fir seedlings under warming].
    Jiang Q, Chen GS, Chen TT, Zhang LH, Yan XJ, Xiong C.
    Ying Yong Sheng Tai Xue Bao; 2019 Jul 11; 30(7):2156-2164. PubMed ID: 31418217
    [Abstract] [Full Text] [Related]

  • 26. Physiological and proteomic analysis reveals the different responses of Cunninghamia lanceolata seedlings to nitrogen and phosphorus additions.
    Zhang Y, Han Q, Guo Q, Zhang S.
    J Proteomics; 2016 Sep 02; 146():109-21. PubMed ID: 27389851
    [Abstract] [Full Text] [Related]

  • 27. Synergistic effects of arbuscular mycorrhizal fungi and biochar are highly beneficial to Ligustrum lucidum seedlings in Cd-contaminated soil.
    Li T, Yang H, Zhang N, Dong L, Wu A, Wu Q, Zhao M, Liu H, Li Y, Wang Y.
    Environ Sci Pollut Res Int; 2024 Feb 02; 31(7):11214-11227. PubMed ID: 38217817
    [Abstract] [Full Text] [Related]

  • 28. Individual and combined effects of arbuscular mycorrhizal fungi and phytohormones on the growth and physiobiochemical characteristics of tea cutting seedlings.
    Gao X, Liu Y, Liu C, Guo C, Zhang Y, Ma C, Duan X.
    Front Plant Sci; 2023 Feb 02; 14():1140267. PubMed ID: 37056488
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Can arbuscular mycorrhizal fungi and rhizobacteria facilitate 33P uptake in maize plants under water stress?
    Silva AMM, Jones DL, Chadwick DR, Qi X, Cotta SR, Araújo VLVP, Matteoli FP, Lacerda-Júnior GV, Pereira APA, Fernandes-Júnior PI, Cardoso EJBN.
    Microbiol Res; 2023 Jun 02; 271():127350. PubMed ID: 36913786
    [Abstract] [Full Text] [Related]

  • 31. Drought stress introduces growth, physiological traits and ecological stoichiometry changes in two contrasting Cunninghamia lanceolata cultivars planted in continuous-plantation soils.
    Bian F, Wang Y, Duan B, Wu Z, Zhang Y, Bi Y, Wang A, Zhong H, Du X.
    BMC Plant Biol; 2021 Aug 18; 21(1):379. PubMed ID: 34407754
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Comparative photochemistry activity and antioxidant responses in male and female Populus cathayana cuttings inoculated with arbuscular mycorrhizal fungi under salt.
    Wu N, Li Z, Wu F, Tang M.
    Sci Rep; 2016 Nov 29; 6():37663. PubMed ID: 27898056
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Mycorrhizal symbiosis promotes the nutrient content accumulation and affects the root exudates in maize.
    Ma J, Wang W, Yang J, Qin S, Yang Y, Sun C, Pei G, Zeeshan M, Liao H, Liu L, Huang J.
    BMC Plant Biol; 2022 Feb 05; 22(1):64. PubMed ID: 35123400
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Co-inoculation of Arizona cypress with arbuscular mycorrhiza fungi and Pseudomonas fluorescens under fuel pollution.
    Aalipour H, Nikbakht A, Etemadi N.
    Mycorrhiza; 2019 May 05; 29(3):277-289. PubMed ID: 30900025
    [Abstract] [Full Text] [Related]

  • 38. Hypericin and pseudohypericin concentrations of a valuable medicinal plant Hypericum perforatum L. are enhanced by arbuscular mycorrhizal fungi.
    Zubek S, Mielcarek S, Turnau K.
    Mycorrhiza; 2012 Feb 05; 22(2):149-56. PubMed ID: 21626142
    [Abstract] [Full Text] [Related]

  • 39. Arbuscular mycorrhizal fungi improve growth, essential oil, secondary metabolism, and yield of tobacco (Nicotiana tabacum L.) under drought stress conditions.
    Begum N, Akhtar K, Ahanger MA, Iqbal M, Wang P, Mustafa NS, Zhang L.
    Environ Sci Pollut Res Int; 2021 Sep 05; 28(33):45276-45295. PubMed ID: 33860891
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 14.