These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
197 related items for PubMed ID: 38567439
1. Assessing treatment effect heterogeneity in the presence of missing effect modifier data in cluster-randomized trials. Blette BS, Halpern SD, Li F, Harhay MO. Stat Methods Med Res; 2024 May; 33(5):909-927. PubMed ID: 38567439 [Abstract] [Full Text] [Related]
7. Hierarchical Bayesian modeling of heterogeneous outcome variance in cluster randomized trials. Tong G, Tong J, Jiang Y, Esserman D, Harhay MO, Warren JL. Clin Trials; 2024 Aug 10; 21(4):451-460. PubMed ID: 38197388 [Abstract] [Full Text] [Related]
8. Accounting for expected attrition in the planning of cluster randomized trials for assessing treatment effect heterogeneity. Tong J, Li F, Harhay MO, Tong G. BMC Med Res Methodol; 2023 Apr 06; 23(1):85. PubMed ID: 37024809 [Abstract] [Full Text] [Related]
13. A pattern-mixture model approach for handling missing continuous outcome data in longitudinal cluster randomized trials. Fiero MH, Hsu CH, Bell ML. Stat Med; 2017 Nov 20; 36(26):4094-4105. PubMed ID: 28783884 [Abstract] [Full Text] [Related]
14. A comparison of imputation strategies in cluster randomized trials with missing binary outcomes. Caille A, Leyrat C, Giraudeau B. Stat Methods Med Res; 2016 Dec 20; 25(6):2650-2669. PubMed ID: 24713160 [Abstract] [Full Text] [Related]
15. Imputation of missing covariate in randomized controlled trials with a continuous outcome: Scoping review and new results. Kayembe MT, Jolani S, Tan FES, van Breukelen GJP. Pharm Stat; 2020 Nov 20; 19(6):840-860. PubMed ID: 32510791 [Abstract] [Full Text] [Related]
16. The mixed model for repeated measures for cluster randomized trials: a simulation study investigating bias and type I error with missing continuous data. Bell ML, Rabe BA. Trials; 2020 Feb 07; 21(1):148. PubMed ID: 32033617 [Abstract] [Full Text] [Related]
17. Missing binary outcomes under covariate-dependent missingness in cluster randomised trials. Hossain A, DiazOrdaz K, Bartlett JW. Stat Med; 2017 Aug 30; 36(19):3092-3109. PubMed ID: 28557022 [Abstract] [Full Text] [Related]
18. Bias and Precision of the "Multiple Imputation, Then Deletion" Method for Dealing With Missing Outcome Data. Sullivan TR, Salter AB, Ryan P, Lee KJ. Am J Epidemiol; 2015 Sep 15; 182(6):528-34. PubMed ID: 26337075 [Abstract] [Full Text] [Related]
19. Intent-to-treat analysis of cluster randomized trials when clusters report unidentifiable outcome proportions. DeSantis SM, Li R, Zhang Y, Wang X, Vernon SW, Tilley BC, Koch G. Clin Trials; 2020 Dec 15; 17(6):627-636. PubMed ID: 32838555 [Abstract] [Full Text] [Related]
20. Is using multiple imputation better than complete case analysis for estimating a prevalence (risk) difference in randomized controlled trials when binary outcome observations are missing? Mukaka M, White SA, Terlouw DJ, Mwapasa V, Kalilani-Phiri L, Faragher EB. Trials; 2016 Jul 22; 17():341. PubMed ID: 27450066 [Abstract] [Full Text] [Related] Page: [Next] [New Search]