These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Phospholipase A2 activity of low density lipoprotein: evidence for an intrinsic phospholipase A2 activity of apoprotein B-100. Parthasarathy S, Barnett J. Proc Natl Acad Sci U S A; 1990 Dec; 87(24):9741-5. PubMed ID: 2263624 [Abstract] [Full Text] [Related]
5. Potent modification of low density lipoprotein by group X secretory phospholipase A2 is linked to macrophage foam cell formation. Hanasaki K, Yamada K, Yamamoto S, Ishimoto Y, Saiga A, Ono T, Ikeda M, Notoya M, Kamitani S, Arita H. J Biol Chem; 2002 Aug 09; 277(32):29116-24. PubMed ID: 12021277 [Abstract] [Full Text] [Related]
8. Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: recognition by receptors for acetylated low density lipoproteins. Henriksen T, Mahoney EM, Steinberg D. Proc Natl Acad Sci U S A; 1981 Oct 09; 78(10):6499-503. PubMed ID: 6273873 [Abstract] [Full Text] [Related]
9. Phospholipase A2-modified LDL is taken up at enhanced rate by macrophages. Aviram M, Maor I. Biochem Biophys Res Commun; 1992 May 29; 185(1):465-72. PubMed ID: 1599485 [Abstract] [Full Text] [Related]
10. Probucol inhibits oxidative modification of low density lipoprotein. Parthasarathy S, Young SG, Witztum JL, Pittman RC, Steinberg D. J Clin Invest; 1986 Feb 29; 77(2):641-4. PubMed ID: 3944273 [Abstract] [Full Text] [Related]
11. Nonenzymatic oxidative cleavage of peptide bonds in apoprotein B-100. Fong LG, Parthasarathy S, Witztum JL, Steinberg D. J Lipid Res; 1987 Dec 29; 28(12):1466-77. PubMed ID: 3323390 [Abstract] [Full Text] [Related]
12. Immunoreactivity of apolipoprotein B-100 and binding to LDL-receptor of phospholipase A2-treated low density lipoproteins. Korotaeva AA, Golovanova NK, Vlasik TN, Yanushevskaya EV, Tsibulsky VP, Yakushkin VV, Tvorogova MG, Morozkin AD, Prokazova NV. Biochemistry (Mosc); 1998 Dec 29; 63(12):1430-7. PubMed ID: 9916162 [Abstract] [Full Text] [Related]
13. A modification of apolipoprotein B accounts for most of the induction of macrophage growth by oxidized low density lipoprotein. Martens JS, Lougheed M, Gómez-Muñoz A, Steinbrecher UP. J Biol Chem; 1999 Apr 16; 274(16):10903-10. PubMed ID: 10196168 [Abstract] [Full Text] [Related]
14. Participation of the arachidonic acid cascade pathway in macrophage binding/uptake of oxidized low density lipoprotein. Beppu M, Watanabe M, Sunohara M, Ohishi K, Mishima E, Kawachi H, Fujii M, Kikugawa K. Biol Pharm Bull; 2002 Jun 16; 25(6):710-7. PubMed ID: 12081134 [Abstract] [Full Text] [Related]
15. Hydrolysis of low-density lipoprotein phospholipids in arterial smooth muscle cells. Ishikawa Y, Nishide T, Sasaki N, Shirai K, Saito Y, Yoshida S. Biochim Biophys Acta; 1988 Jul 22; 961(2):170-6. PubMed ID: 3390454 [Abstract] [Full Text] [Related]
16. Secretory phospholipase A2 and lipoprotein lipase enhance 15-lipoxygenase-induced enzymic and nonenzymic lipid peroxidation in low-density lipoproteins. Neuzil J, Upston JM, Witting PK, Scott KF, Stocker R. Biochemistry; 1998 Jun 23; 37(25):9203-10. PubMed ID: 9636068 [Abstract] [Full Text] [Related]
17. Low-density lipoprotein stimulated peroxide production and endocytosis in cultured human endothelial cells: mechanisms of action. Holland JA, Meyer JW, Schmitt ME, Sauro MD, Johnson DK, Abdul-Karim RW, Patel V, Ziegler LM, Schillinger KJ, Small RF, Lemanski LF. Endothelium; 1997 Jun 23; 5(3):191-207. PubMed ID: 9272382 [Abstract] [Full Text] [Related]
18. Free radical modification of low-density lipoprotein: mechanisms and biological consequences. Heinecke JW. Free Radic Biol Med; 1987 Jun 23; 3(1):65-73. PubMed ID: 3040538 [Abstract] [Full Text] [Related]