These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


135 related items for PubMed ID: 38581408

  • 21. Tailoring Active Cu2 O/Copper Interface Sites for N-Formylation of Aliphatic Primary Amines with CO2 /H2.
    Dai X, Li T, Wang B, Kreyenschulte C, Bartling S, Liu S, He D, Yuan H, Brückner A, Shi F, Rabeah J, Cui X.
    Angew Chem Int Ed Engl; 2023 May 15; 62(21):e202217380. PubMed ID: 36951593
    [Abstract] [Full Text] [Related]

  • 22. Cooperative Catalytic Activation of Si-H Bonds: CO2 -Based Synthesis of Formamides from Amines and Hydrosilanes under Mild Conditions.
    Luo R, Lin X, Chen Y, Zhang W, Zhou X, Ji H.
    ChemSusChem; 2017 Mar 22; 10(6):1224-1232. PubMed ID: 27860420
    [Abstract] [Full Text] [Related]

  • 23. Highly Efficient and Selective N-Formylation of Amines with CO2 and H2 Catalyzed by Porous Organometallic Polymers.
    Shen Y, Zheng Q, Chen ZN, Wen D, Clark JH, Xu X, Tu T.
    Angew Chem Int Ed Engl; 2021 Feb 19; 60(8):4125-4132. PubMed ID: 33200851
    [Abstract] [Full Text] [Related]

  • 24. Supported CuII Single-Ion Catalyst for Total Carbon Utilization of C2 and C3 Biomass-Based Platform Molecules in the N-Formylation of Amines.
    Dai X, Wang X, Rabeah J, Kreyenschulte C, Brückner A, Shi F.
    Chemistry; 2021 Dec 06; 27(68):16889-16895. PubMed ID: 34423878
    [Abstract] [Full Text] [Related]

  • 25. Direct Methylation of Amines with Carbon Dioxide and Molecular Hydrogen using Supported Gold Catalysts.
    Du XL, Tang G, Bao HL, Jiang Z, Zhong XH, Su DS, Wang JQ.
    ChemSusChem; 2015 Oct 26; 8(20):3489-96. PubMed ID: 26364582
    [Abstract] [Full Text] [Related]

  • 26. Understanding the Role of Inter- and Intramolecular Promoters in Electro- and Photochemical CO2 Reduction Using Mn, Re, and Ru Catalysts.
    Fujita E, Grills DC, Manbeck GF, Polyansky DE.
    Acc Chem Res; 2022 Mar 01; 55(5):616-628. PubMed ID: 35133133
    [Abstract] [Full Text] [Related]

  • 27. Conversion of atmospheric CO2 catalyzed by thiolate-based ionic liquids under mild conditions: efficient synthesis of 2-oxazolidinones.
    Wu J, Niu J, Liu H, Xie R, Zhu N.
    Org Biomol Chem; 2024 Oct 15; 22(40):8138-8143. PubMed ID: 39149914
    [Abstract] [Full Text] [Related]

  • 28. Catalytic reductive aminations using molecular hydrogen for synthesis of different kinds of amines.
    Murugesan K, Senthamarai T, Chandrashekhar VG, Natte K, Kamer PCJ, Beller M, Jagadeesh RV.
    Chem Soc Rev; 2020 Sep 07; 49(17):6273-6328. PubMed ID: 32729851
    [Abstract] [Full Text] [Related]

  • 29. Effective Reduction of CO2 with Aromatic Amines into N-Formamides Triggered by Noble-Free Metal-Organic Framework Catalysts Under Mild Conditions.
    Kang X, Wang Z, Shi X, Jiang X, Liu Z, Zhao B.
    Small; 2024 Jul 07; 20(27):e2311511. PubMed ID: 38319022
    [Abstract] [Full Text] [Related]

  • 30. Incorporating Catalytic Units into Nanomaterials: Rational Design of Multipurpose Catalysts for CO2 Valorization.
    Qiu LQ, Li HR, He LN.
    Acc Chem Res; 2023 Aug 15; 56(16):2225-2240. PubMed ID: 37535829
    [Abstract] [Full Text] [Related]

  • 31. Rapid one-pot radiosynthesis of [carbonyl-11C]formamides from primary amines and [11C]CO2.
    Luzi F, Gee AD, Bongarzone S.
    EJNMMI Radiopharm Chem; 2020 Sep 01; 5(1):20. PubMed ID: 32870409
    [Abstract] [Full Text] [Related]

  • 32. Catalytic Synthesis of Formamides by Integrating CO2 Capture and Morpholine Formylation on Supported Iridium Catalyst.
    Cheng D, Wang M, Tang L, Gao Z, Qin X, Gao Y, Xiao D, Zhou W, Ma D.
    Angew Chem Int Ed Engl; 2022 Jun 27; 61(26):e202202654. PubMed ID: 35394704
    [Abstract] [Full Text] [Related]

  • 33. Highly Efficient Ruthenium-Catalyzed Semi-hydrogenation of Urea Derivatives to Formamides.
    Zhu J, Zhang Y, Wen Z, Ma Q, Wang Y, Yao J, Li H.
    Chemistry; 2023 Jun 02; 29(31):e202300106. PubMed ID: 36960548
    [Abstract] [Full Text] [Related]

  • 34. Ionic-Liquid-Catalyzed Approaches under Metal-Free Conditions.
    Zhao Y, Han B, Liu Z.
    Acc Chem Res; 2021 Jul 30. PubMed ID: 34327980
    [Abstract] [Full Text] [Related]

  • 35. Pivotal Role of the Basic Character of Organic and Salt Catalysts in C-N Bond Forming Reactions of Amines with CO2.
    Hulla M, Dyson PJ.
    Angew Chem Int Ed Engl; 2020 Jan 13; 59(3):1002-1017. PubMed ID: 31364789
    [Abstract] [Full Text] [Related]

  • 36. Switching the hydrogenation selectivity of urea derivatives via subtly tuning the amount and type of additive in the catalyst system.
    Zhu J, Wang Y, Yao J, Li H.
    Chem Sci; 2024 Feb 07; 15(6):2089-2099. PubMed ID: 38332828
    [Abstract] [Full Text] [Related]

  • 37. Ionic Liquids Catalysis for Carbon Dioxide Conversion With Nucleophiles.
    Xia SM, Chen KH, Fu HC, He LN.
    Front Chem; 2018 Feb 07; 6():462. PubMed ID: 30349815
    [Abstract] [Full Text] [Related]

  • 38. Porous Organic Polymers with Built-in N-Heterocyclic Carbenes: Selective and Efficient Heterogeneous Catalyst for the Reductive N-Formylation of Amines with CO2.
    Lv H, Wang W, Li F.
    Chemistry; 2018 Nov 07; 24(62):16588-16594. PubMed ID: 30136747
    [Abstract] [Full Text] [Related]

  • 39. Readily regenerable amine-free CO2 sorbent based on a solid-supported carboxylate ionic liquid.
    Yousefe M, Ursano B, Reina JA, Puga A.
    J Environ Manage; 2023 May 15; 334():117469. PubMed ID: 36796193
    [Abstract] [Full Text] [Related]

  • 40. Immobilization of ionic liquids to covalent organic frameworks for catalyzing the formylation of amines with CO2 and phenylsilane.
    Dong B, Wang L, Zhao S, Ge R, Song X, Wang Y, Gao Y.
    Chem Commun (Camb); 2016 Jun 04; 52(44):7082-5. PubMed ID: 27152374
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.