These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
116 related items for PubMed ID: 38619670
1. RNA-sequencing exploration on SIR2 and SOD genes in Polyalthia longifolia leaf methanolic extracts (PLME) mediated anti-aging effects in Saccharomyces cerevisiae BY611 yeast cells. Hemagirri M, Chen Y, Gopinath SCB, Adnan M, Patel M, Sasidharan S. Biogerontology; 2024 Aug; 25(4):705-737. PubMed ID: 38619670 [Abstract] [Full Text] [Related]
2. In vitro antiaging activity of polyphenol rich Polyalthia longifolia (Annonaceae) leaf extract in Saccharomyces cerevisiae BY611 yeast cells. Hemagirri M, Sasidharan S. J Ethnopharmacol; 2022 May 23; 290():115110. PubMed ID: 35181488 [Abstract] [Full Text] [Related]
3. Evaluation of In Situ Antiaging Activity in Saccharomyces cerevisiae BY611 Yeast Cells Treated with Polyalthia longifolia Leaf Methanolic Extract (PLME) Using Different Microscopic Approaches: A Morphology-Based Evaluation. Hemagirri M, Sasidharan S. Microsc Microanal; 2022 Mar 09; ():1-13. PubMed ID: 35260222 [Abstract] [Full Text] [Related]
4. Anti-aging effects of phloridzin, an apple polyphenol, on yeast via the SOD and Sir2 genes. Xiang L, Sun K, Lu J, Weng Y, Taoka A, Sakagami Y, Qi J. Biosci Biotechnol Biochem; 2011 Mar 09; 75(5):854-8. PubMed ID: 21597195 [Abstract] [Full Text] [Related]
5. Standardized Polyalthia longifolia leaf extract induces the apoptotic HeLa cells death via microRNA regulation: identification, validation, and therapeutic potential. Vijayarathna S, Oon CE, Al-Zahrani M, Abualreesh MH, Chen Y, Kanwar JR, Sahreen S, Ghazanfar S, Adnan M, Sasidharan S. Front Pharmacol; 2023 Mar 09; 14():1198425. PubMed ID: 37693900 [Abstract] [Full Text] [Related]
6. Polyalthia longifolia Methanolic Leaf Extracts (PLME) induce apoptosis, cell cycle arrest and mitochondrial potential depolarization by possibly modulating the redox status in hela cells. Vijayarathna S, Oon CE, Chen Y, Kanwar JR, Sasidharan S. Biomed Pharmacother; 2017 May 09; 89():499-514. PubMed ID: 28249252 [Abstract] [Full Text] [Related]
7. Proteasomes, Sir2, and Hxk2 form an interconnected aging network that impinges on the AMPK/Snf1-regulated transcriptional repressor Mig1. Yao Y, Tsuchiyama S, Yang C, Bulteau AL, He C, Robison B, Tsuchiya M, Miller D, Briones V, Tar K, Potrero A, Friguet B, Kennedy BK, Schmidt M. PLoS Genet; 2015 Jan 09; 11(1):e1004968. PubMed ID: 25629410 [Abstract] [Full Text] [Related]
8. Growth phase-dependent roles of Sir2 in oxidative stress resistance and chronological lifespan in yeast. Kang WK, Kim YH, Kim BS, Kim JY. J Microbiol; 2014 Aug 09; 52(8):652-8. PubMed ID: 24997552 [Abstract] [Full Text] [Related]
9. The implication of Sir2 in replicative aging and senescence in Saccharomyces cerevisiae. Ha CW, Huh WK. Aging (Albany NY); 2011 Mar 09; 3(3):319-24. PubMed ID: 21415463 [Abstract] [Full Text] [Related]
10. Spreading-dependent or independent Sir2-mediated gene silencing in budding yeast. Yeom S, Oh J, Lee JS. Genes Genomics; 2022 Mar 09; 44(3):359-367. PubMed ID: 35034281 [Abstract] [Full Text] [Related]
11. SIR2 and other genes are abundantly expressed in long-lived natural segregants for replicative aging of the budding yeast Saccharomyces cerevisiae. Guo Z, Adomas AB, Jackson ED, Qin H, Townsend JP. FEMS Yeast Res; 2011 Jun 09; 11(4):345-55. PubMed ID: 21306556 [Abstract] [Full Text] [Related]
12. Reversible glutathionylation of Sir2 by monothiol glutaredoxins Grx3/4 regulates stress resistance. Vall-Llaura N, Reverter-Branchat G, Vived C, Weertman N, Rodríguez-Colman MJ, Cabiscol E. Free Radic Biol Med; 2016 Jul 09; 96():45-56. PubMed ID: 27085841 [Abstract] [Full Text] [Related]
13. Standardized Polyalthia longifolia leaf extract (PLME) inhibits cell proliferation and promotes apoptosis: The anti-cancer study with various microscopy methods. Vijayarathna S, Chen Y, Kanwar JR, Sasidharan S. Biomed Pharmacother; 2017 Jul 09; 91():366-377. PubMed ID: 28463800 [Abstract] [Full Text] [Related]
14. Genetic manipulation of longevity-related genes as a tool to regulate yeast life span and metabolite production during winemaking. Orozco H, Matallana E, Aranda A. Microb Cell Fact; 2013 Jan 02; 12():1. PubMed ID: 23282100 [Abstract] [Full Text] [Related]
15. Genome-wide analysis of functional sirtuin chromatin targets in yeast. Li M, Valsakumar V, Poorey K, Bekiranov S, Smith JS. Genome Biol; 2013 May 27; 14(5):R48. PubMed ID: 23710766 [Abstract] [Full Text] [Related]
16. HST1 increases replicative lifespan of a sir2Δ mutant in the absence of PDE2 in Saccharomyces cerevisiae. Kang WK, Devare M, Kim JY. J Microbiol; 2017 Feb 27; 55(2):123-129. PubMed ID: 28120189 [Abstract] [Full Text] [Related]
17. Yeast heterochromatin regulators Sir2 and Sir3 act directly at euchromatic DNA replication origins. Hoggard TA, Chang F, Perry KR, Subramanian S, Kenworthy J, Chueng J, Shor E, Hyland EM, Boeke JD, Weinreich M, Fox CA. PLoS Genet; 2018 May 27; 14(5):e1007418. PubMed ID: 29795547 [Abstract] [Full Text] [Related]
18. Parishin from Gastrodia elata Extends the Lifespan of Yeast via Regulation of Sir2/Uth1/TOR Signaling Pathway. Lin Y, Sun Y, Weng Y, Matsuura A, Xiang L, Qi J. Oxid Med Cell Longev; 2016 May 27; 2016():4074690. PubMed ID: 27429709 [Abstract] [Full Text] [Related]
19. During yeast chronological aging resveratrol supplementation results in a short-lived phenotype Sir2-dependent. Orlandi I, Stamerra G, Strippoli M, Vai M. Redox Biol; 2017 Aug 27; 12():745-754. PubMed ID: 28412652 [Abstract] [Full Text] [Related]
20. Anti-aging effects of hesperidin on Saccharomyces cerevisiae via inhibition of reactive oxygen species and UTH1 gene expression. Sun K, Xiang L, Ishihara S, Matsuura A, Sakagami Y, Qi J. Biosci Biotechnol Biochem; 2012 Aug 27; 76(4):640-5. PubMed ID: 22484922 [Abstract] [Full Text] [Related] Page: [Next] [New Search]