These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


139 related items for PubMed ID: 38621296

  • 1. 4-Amidophenol Quinone Methide Precursors: Effective and Broad-Scope Nonoxime Reactivators of Organophosphorus-Inhibited Cholinesterases and Resurrectors of Organophosphorus-Aged Acetylcholinesterase.
    Lovins AR, Miller KA, Buck AK, Ensey DS, Homoelle RK, Murtha MC, Ward NA, Shanahan LA, Gutti G, Shriwas P, McElroy CA, Callam CS, Hadad CM.
    ACS Chem Neurosci; 2024 May 01; 15(9):1813-1827. PubMed ID: 38621296
    [Abstract] [Full Text] [Related]

  • 2. Interactions between acetylcholinesterase, toxic organophosphorus compounds and a short series of structurally related non-oxime reactivators: Analysis of reactivation and inhibition kinetics in vitro.
    Horn G, de Koning MC, van Grol M, Thiermann H, Worek F.
    Toxicol Lett; 2018 Dec 15; 299():218-225. PubMed ID: 30312685
    [Abstract] [Full Text] [Related]

  • 3. Treatment of Organophosphorus Poisoning with 6-Alkoxypyridin-3-ol Quinone Methide Precursors: Resurrection of Methylphosphonate-Aged Acetylcholinesterase.
    Clay WK, Buck AK, He Y, Hernández Sánchez DN, Ward NA, Lear JM, Nguyen KQ, Clark BH, Sapia RJ, Lalisse RF, Sriraman A, Cadieux CL, McElroy CA, Callam CS, Hadad CM.
    Chem Res Toxicol; 2024 Apr 15; 37(4):643-657. PubMed ID: 38556765
    [Abstract] [Full Text] [Related]

  • 4. Enzyme-kinetic investigation of different sarin analogues reacting with human acetylcholinesterase and butyrylcholinesterase.
    Bartling A, Worek F, Szinicz L, Thiermann H.
    Toxicology; 2007 Apr 20; 233(1-3):166-72. PubMed ID: 16904809
    [Abstract] [Full Text] [Related]

  • 5. New Heterostilbene and Triazole Oximes as Potential CNS-Active and Cholinesterase-Targeted Therapeutics.
    Mlakić M, Čadež T, Šinko G, Škorić I, Kovarik Z.
    Biomolecules; 2024 Jun 11; 14(6):. PubMed ID: 38927082
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Kinetic analysis of interactions of amodiaquine with human cholinesterases and organophosphorus compounds.
    Bierwisch A, Wille T, Thiermann H, Worek F.
    Toxicol Lett; 2016 Mar 30; 246():49-56. PubMed ID: 26851641
    [Abstract] [Full Text] [Related]

  • 8. A common mechanism for resistance to oxime reactivation of acetylcholinesterase inhibited by organophosphorus compounds.
    Maxwell DM, Brecht KM, Sweeney RE.
    Chem Biol Interact; 2013 Mar 25; 203(1):72-6. PubMed ID: 22982773
    [Abstract] [Full Text] [Related]

  • 9. In vitro ability of currently available oximes to reactivate organophosphate pesticide-inhibited human acetylcholinesterase and butyrylcholinesterase.
    Jun D, Musilova L, Musilek K, Kuca K.
    Int J Mol Sci; 2011 Mar 25; 12(3):2077-87. PubMed ID: 21673941
    [Abstract] [Full Text] [Related]

  • 10. Reactivation of organophosphate-inhibited serum butyrylcholinesterase by novel substituted phenoxyalkyl pyridinium oximes and traditional oximes.
    Nichols RH, Chambers JE.
    Toxicology; 2021 Mar 30; 452():152719. PubMed ID: 33592259
    [Abstract] [Full Text] [Related]

  • 11. Pyridoxal oxime derivative potency to reactivate cholinesterases inhibited by organophosphorus compounds.
    Bušić V, Katalinić M, Šinko G, Kovarik Z, Gašo-Sokač D.
    Toxicol Lett; 2016 Nov 16; 262():114-122. PubMed ID: 27693733
    [Abstract] [Full Text] [Related]

  • 12. Resurrection and Reactivation of Acetylcholinesterase and Butyrylcholinesterase.
    Franjesevic AJ, Sillart SB, Beck JM, Vyas S, Callam CS, Hadad CM.
    Chemistry; 2019 Apr 11; 25(21):5337-5371. PubMed ID: 30444932
    [Abstract] [Full Text] [Related]

  • 13. Effect of reversible ligands on oxime-induced reactivation of sarin- and cyclosarin-inhibited human acetylcholinesterase.
    Scheffel C, Thiermann H, Worek F.
    Toxicol Lett; 2015 Feb 03; 232(3):557-65. PubMed ID: 25522658
    [Abstract] [Full Text] [Related]

  • 14. Suitability of human butyrylcholinesterase as therapeutic marker and pseudo catalytic scavenger in organophosphate poisoning: a kinetic analysis.
    Aurbek N, Thiermann H, Eyer F, Eyer P, Worek F.
    Toxicology; 2009 May 17; 259(3):133-9. PubMed ID: 19428953
    [Abstract] [Full Text] [Related]

  • 15. Reactivators of butyrylcholinesterase inhibited by organophosphorus compounds.
    Kohoutova Z, Prchalova E, Knittelova K, Musilek K, Malinak D.
    Bioorg Chem; 2024 Sep 17; 150():107526. PubMed ID: 38878749
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Cholesterol Oxime Olesoxime Assessed as a Potential Ligand of Human Cholinesterases.
    Kolić D, Šinko G, Jean L, Chioua M, Dias J, Marco-Contelles J, Kovarik Z.
    Biomolecules; 2024 May 15; 14(5):. PubMed ID: 38785995
    [Abstract] [Full Text] [Related]

  • 18. Two possible orientations of the HI-6 molecule in the reactivation of organophosphate-inhibited acetylcholinesterase.
    Luo C, Leader H, Radic Z, Maxwell DM, Taylor P, Doctor BP, Saxena A.
    Biochem Pharmacol; 2003 Aug 01; 66(3):387-92. PubMed ID: 12907237
    [Abstract] [Full Text] [Related]

  • 19. Planarian cholinesterase: in vitro characterization of an evolutionarily ancient enzyme to study organophosphorus pesticide toxicity and reactivation.
    Hagstrom D, Hirokawa H, Zhang L, Radic Z, Taylor P, Collins ES.
    Arch Toxicol; 2017 Aug 01; 91(8):2837-2847. PubMed ID: 27990564
    [Abstract] [Full Text] [Related]

  • 20. Dimethylphosphoryl-inhibited human cholinesterases: inhibition, reactivation, and aging kinetics.
    Worek F, Diepold C, Eyer P.
    Arch Toxicol; 1999 Feb 01; 73(1):7-14. PubMed ID: 10207609
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.