These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
205 related items for PubMed ID: 3864154
1. The role of ascorbic acid in senile cataract. Bensch KG, Fleming JE, Lohmann W. Proc Natl Acad Sci U S A; 1985 Nov; 82(21):7193-6. PubMed ID: 3864154 [Abstract] [Full Text] [Related]
2. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products. Saxena P, Saxena AK, Cui XL, Obrenovich M, Gudipaty K, Monnier VM. Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665 [Abstract] [Full Text] [Related]
3. High galactose levels in vitro and in vivo impair ascorbate regeneration and increase ascorbate-mediated glycation in cultured rat lens. Saxena P, Saxena AK, Monnier VM. Exp Eye Res; 1996 Nov; 63(5):535-45. PubMed ID: 8994357 [Abstract] [Full Text] [Related]
4. Glycation by ascorbic acid oxidation products leads to the aggregation of lens proteins. Linetsky M, Shipova E, Cheng R, Ortwerth BJ. Biochim Biophys Acta; 2008 Jan; 1782(1):22-34. PubMed ID: 18023423 [Abstract] [Full Text] [Related]
5. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses. Padayatti PS, Ng AS, Uchida K, Glomb MA, Nagaraj RH. Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743 [Abstract] [Full Text] [Related]
6. UVA light-excited kynurenines oxidize ascorbate and modify lens proteins through the formation of advanced glycation end products: implications for human lens aging and cataract formation. Linetsky M, Raghavan CT, Johar K, Fan X, Monnier VM, Vasavada AR, Nagaraj RH. J Biol Chem; 2014 Jun 13; 289(24):17111-23. PubMed ID: 24798334 [Abstract] [Full Text] [Related]
7. The effect of UVA light on the anaerobic oxidation of ascorbic acid and the glycation of lens proteins. Ortwerth BJ, Chemoganskiy V, Mossine VV, Olesen PR. Invest Ophthalmol Vis Sci; 2003 Jul 13; 44(7):3094-102. PubMed ID: 12824256 [Abstract] [Full Text] [Related]
8. Vitamin C mediates chemical aging of lens crystallins by the Maillard reaction in a humanized mouse model. Fan X, Reneker LW, Obrenovich ME, Strauch C, Cheng R, Jarvis SM, Ortwerth BJ, Monnier VM. Proc Natl Acad Sci U S A; 2006 Nov 07; 103(45):16912-7. PubMed ID: 17075057 [Abstract] [Full Text] [Related]
9. Inhibition of crystallin ascorbylation by nucleophilic compounds in the hSVCT2 mouse model of lenticular aging. Fan X, Monnier VM. Invest Ophthalmol Vis Sci; 2008 Nov 07; 49(11):4945-52. PubMed ID: 18421088 [Abstract] [Full Text] [Related]
10. Similarity of the yellow chromophores isolated from human cataracts with those from ascorbic acid-modified calf lens proteins: evidence for ascorbic acid glycation during cataract formation. Cheng R, Lin B, Lee KW, Ortwerth BJ. Biochim Biophys Acta; 2001 Jul 27; 1537(1):14-26. PubMed ID: 11476959 [Abstract] [Full Text] [Related]
11. Detection of nonenzymatic browning products in the human lens. Monnier VM, Cerami A. Biochim Biophys Acta; 1983 Oct 04; 760(1):97-103. PubMed ID: 6615888 [Abstract] [Full Text] [Related]
13. Glycation mediated crosslinking between alpha-crystallin and MP26 in intact lens membranes. Prabhakaram M, Katz ML, Ortwerth BJ. Mech Ageing Dev; 1996 Oct 04; 91(1):65-78. PubMed ID: 8910261 [Abstract] [Full Text] [Related]
14. Glutathione levels of the human crystalline lens in aging and its antioxidant effect against the oxidation of lens proteins. Kamei A. Biol Pharm Bull; 1993 Sep 04; 16(9):870-5. PubMed ID: 8268853 [Abstract] [Full Text] [Related]
15. High correlation between pentosidine protein crosslinks and pigmentation implicates ascorbate oxidation in human lens senescence and cataractogenesis. Nagaraj RH, Sell DR, Prabhakaram M, Ortwerth BJ, Monnier VM. Proc Natl Acad Sci U S A; 1991 Nov 15; 88(22):10257-61. PubMed ID: 1946446 [Abstract] [Full Text] [Related]
16. [The oxidative stress in the cataract formation]. Obara Y. Nippon Ganka Gakkai Zasshi; 1995 Dec 15; 99(12):1303-41. PubMed ID: 8571853 [Abstract] [Full Text] [Related]
17. Protein oxidation and loss of protease activity may lead to cataract formation in the aged lens. Taylor A, Davies KJ. Free Radic Biol Med; 1987 Dec 15; 3(6):371-7. PubMed ID: 3322949 [Abstract] [Full Text] [Related]
18. Non-tryptophan fluorescence of crystallins from normal and cataractous human lenses. Bessems GJ, Keizer E, Wollensak J, Hoenders HJ. Invest Ophthalmol Vis Sci; 1987 Jul 15; 28(7):1157-63. PubMed ID: 3596993 [Abstract] [Full Text] [Related]
19. Formation of hydroxyl radicals in the human lens is related to the severity of nuclear cataract. Garner B, Davies MJ, Truscott RJ. Exp Eye Res; 2000 Jan 15; 70(1):81-8. PubMed ID: 10644423 [Abstract] [Full Text] [Related]
20. Dietary caloric restriction may delay the development of cataract by attenuating the oxidative stress in the lenses of Brown Norway rats. Wang K, Li D, Sun F. Exp Eye Res; 2004 Jan 15; 78(1):151-8. PubMed ID: 14667836 [Abstract] [Full Text] [Related] Page: [Next] [New Search]