These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


122 related items for PubMed ID: 38657973

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Mercury chalcogenide colloidal quantum dots for infrared photodetection: from synthesis to device applications.
    Tian Y, Luo H, Chen M, Li C, Kershaw SV, Zhang R, Rogach AL.
    Nanoscale; 2023 Apr 06; 15(14):6476-6504. PubMed ID: 36960839
    [Abstract] [Full Text] [Related]

  • 26. Efficient Short-Wave Infrared Light-Emitting Diodes Based on Heavy-Metal-Free Quantum Dots.
    Zhao X, Lim LJ, Ang SS, Tan ZK.
    Adv Mater; 2022 Nov 06; 34(45):e2206409. PubMed ID: 36097727
    [Abstract] [Full Text] [Related]

  • 27. Monodisperse and Water-Soluble Quantum Dots for SWIR Imaging via Carboxylic Acid Copolymer Ligands.
    Montana DM, Nasilowski M, Hess WR, Saif M, Carr JA, Nienhaus L, Bawendi MG.
    ACS Appl Mater Interfaces; 2020 Aug 12; 12(32):35845-35855. PubMed ID: 32805785
    [Abstract] [Full Text] [Related]

  • 28. The role of CdS doping in improving SWIR photovoltaic and photoconductive responses in solution grown CdS/PbS heterojunctions.
    Manis-Levy H, Abutbul RE, Grosman A, Peled H, Golan Y, Ashkenasy N, Sa'Ar A, Shikler R, Sarusi G.
    Nanotechnology; 2020 Apr 03; 31(25):255502. PubMed ID: 32160600
    [Abstract] [Full Text] [Related]

  • 29. Infrared Solution-Processed Quantum Dot Solar Cells Reaching External Quantum Efficiency of 80% at 1.35 µm and Jsc in Excess of 34 mA cm-2.
    Bi Y, Pradhan S, Gupta S, Akgul MZ, Stavrinadis A, Konstantatos G.
    Adv Mater; 2018 Feb 03; 30(7):. PubMed ID: 29315877
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Quantum-Confined and Enhanced Optical Absorption of Colloidal PbS Quantum Dots at Wavelengths with Expected Bulk Behavior.
    Debellis D, Gigli G, Ten Brinck S, Infante I, Giansante C.
    Nano Lett; 2017 Feb 08; 17(2):1248-1254. PubMed ID: 28055216
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Compound Quantum Dot-Perovskite Optical Absorbers on Graphene Enhancing Short-Wave Infrared Photodetection.
    Bessonov AA, Allen M, Liu Y, Malik S, Bottomley J, Rushton A, Medina-Salazar I, Voutilainen M, Kallioinen S, Colli A, Bower C, Andrew P, Ryhänen T.
    ACS Nano; 2017 Jun 27; 11(6):5547-5557. PubMed ID: 28558187
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. PbS Quantum Dots Ink with Months-Long Shelf-Lifetime Enabling Scalable and Efficient Short-Wavelength Infrared Photodetectors.
    Wang H, Pinna J, Romero DG, Di Mario L, Koushki RM, Kot M, Portale G, Loi MA.
    Adv Mater; 2024 May 27; 36(19):e2311526. PubMed ID: 38327037
    [Abstract] [Full Text] [Related]

  • 39. Formation of Colloidal In(As,P) Quantum Dots Active in the Short-Wave Infrared, Promoting Growth through Temperature Ramps.
    Leemans J, Respekta D, Bai J, Braeuer S, Vanhaecke F, Hens Z.
    ACS Nano; 2023 Oct 24; 17(20):20002-20012. PubMed ID: 37787479
    [Abstract] [Full Text] [Related]

  • 40. Room Temperature Broadband Bi2Te3/PbS Colloidal Quantum Dots Infrared Photodetectors.
    Yu L, Tian P, Tang L, Zuo W, Zhong H, Hao Q, Teng KS, Zhao G, Su R, Gong X, Yuan J.
    Sensors (Basel); 2023 Apr 27; 23(9):. PubMed ID: 37177533
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.