These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
180 related items for PubMed ID: 38658405
1. Conditioned medium-enriched umbilical cord mesenchymal stem cells: a potential therapeutic strategy for spinal cord injury, unveiling transcriptomic and secretomic insights. Subbarayan R, Murugan Girija D, Raja STK, Krishnamoorthy A, Srinivasan D, Shrestha R, Srivastava N, Ranga Rao S. Mol Biol Rep; 2024 Apr 24; 51(1):570. PubMed ID: 38658405 [Abstract] [Full Text] [Related]
2. Human umbilical cord tissue stem cells and neuronal lineages in an injectable caffeic acid-bioconjugated gelatin hydrogel for transplantation. Subbarayan R, Girija DM, Rao SR. J Cell Physiol; 2019 Mar 24; 234(3):1967-1977. PubMed ID: 30144033 [Abstract] [Full Text] [Related]
3. NT-3-secreting human umbilical cord mesenchymal stromal cell transplantation for the treatment of acute spinal cord injury in rats. Shang AJ, Hong SQ, Xu Q, Wang HY, Yang Y, Wang ZF, Xu BN, Jiang XD, Xu RX. Brain Res; 2011 May 19; 1391():102-13. PubMed ID: 21420392 [Abstract] [Full Text] [Related]
4. Co-Transplantation of Human Umbilical Cord Mesenchymal Stem Cells and Human Neural Stem Cells Improves the Outcome in Rats with Spinal Cord Injury. Sun L, Wang F, Chen H, Liu D, Qu T, Li X, Xu D, Liu F, Yin Z, Chen Y. Cell Transplant; 2019 Jul 19; 28(7):893-906. PubMed ID: 31012325 [Abstract] [Full Text] [Related]
5. Stem cell exosome-loaded Gelfoam improves locomotor dysfunction and neuropathic pain in a rat model of spinal cord injury. Poongodi R, Yang TH, Huang YH, Yang KD, Chen HZ, Chu TY, Wang TY, Lin HC, Cheng JK. Stem Cell Res Ther; 2024 May 20; 15(1):143. PubMed ID: 38764049 [Abstract] [Full Text] [Related]
6. Functional recovery in acute traumatic spinal cord injury after transplantation of human umbilical cord mesenchymal stem cells. Hu SL, Luo HS, Li JT, Xia YZ, Li L, Zhang LJ, Meng H, Cui GY, Chen Z, Wu N, Lin JK, Zhu G, Feng H. Crit Care Med; 2010 Nov 20; 38(11):2181-9. PubMed ID: 20711072 [Abstract] [Full Text] [Related]
7. GMP-compliant extracellular vesicles derived from umbilical cord mesenchymal stromal cells: manufacturing and pre-clinical evaluation in ARDS treatment. Costa-Ferro ZSM, Rocha GV, da Silva KN, Paredes BD, Loiola EC, Silva JD, Santos JLS, Dias RB, Figueira CP, de Oliveira CI, de Moura LD, Ribeiro LNM, de Paula E, Zanette DL, Rocha CAG, Rocco PRM, Souza BSF. Cytotherapy; 2024 Sep 20; 26(9):1013-1025. PubMed ID: 38762805 [Abstract] [Full Text] [Related]
8. The superiority of conditioned medium derived from rapidly expanded mesenchymal stem cells for neural repair. Chen YT, Tsai MJ, Hsieh N, Lo MJ, Lee MJ, Cheng H, Huang WC. Stem Cell Res Ther; 2019 Dec 16; 10(1):390. PubMed ID: 31842998 [Abstract] [Full Text] [Related]
9. The Effect of Wharton Jelly-Derived Mesenchymal Stromal Cells and Their Conditioned Media in the Treatment of a Rat Spinal Cord Injury. Chudickova M, Vackova I, Machova Urdzikova L, Jancova P, Kekulova K, Rehorova M, Turnovcova K, Jendelova P, Kubinova S. Int J Mol Sci; 2019 Sep 12; 20(18):. PubMed ID: 31547264 [Abstract] [Full Text] [Related]
10. The Efficiency of Neurospheres Derived from Human Wharton's Jelly Mesenchymal Stem Cells for Spinal Cord Injury Regeneration in Rats. Somredngan S, Theerakittayakorn K, Nguyen HT, Ngernsoungnern A, Ngernsoungnern P, Sritangos P, Ketudat-Cairns M, Imsoonthornruksa S, Keeratibharat N, Wongsan R, Rungsiwiwut R, Parnpai R. Int J Mol Sci; 2023 Feb 14; 24(4):. PubMed ID: 36835256 [Abstract] [Full Text] [Related]
11. Transplantation of human umbilical mesenchymal stem cells from Wharton's jelly after complete transection of the rat spinal cord. Yang CC, Shih YH, Ko MH, Hsu SY, Cheng H, Fu YS. PLoS One; 2008 Feb 14; 3(10):e3336. PubMed ID: 18852872 [Abstract] [Full Text] [Related]
12. Combinatory effect of mesenchymal stromal cells transplantation and quercetin after spinal cord injury in rat. Wang X, Wang YY, Zhang LL, Li GT, Zhang HT. Eur Rev Med Pharmacol Sci; 2018 May 14; 22(9):2876-2887. PubMed ID: 29771441 [Abstract] [Full Text] [Related]
13. Effects of combination treatment with transcranial magnetic stimulation and bone marrow mesenchymal stem cell transplantation or Raf inhibition on spinal cord injury in rats. Feng S, Wang S, Sun S, Su H, Zhang L. Mol Med Rep; 2021 Apr 14; 23(4):. PubMed ID: 33649786 [Abstract] [Full Text] [Related]
14. Human gingival derived neuronal cells in the optimized caffeic acid hydrogel for hemitransection spinal cord injury model. Subbarayan R, Barathidasan R, Raja STK, Arumugam G, Kuruvilla S, Shanthi P, Ranga Rao S. J Cell Biochem; 2020 Mar 14; 121(3):2077-2088. PubMed ID: 31646674 [Abstract] [Full Text] [Related]
15. Transplantation of Human umbilical cord mesenchymal stem cells promotes functional recovery after spinal cord injury by blocking the expression of IL-7. Bao CS, Li XL, Liu L, Wang B, Yang FB, Chen LG. Eur Rev Med Pharmacol Sci; 2018 Oct 14; 22(19):6436-6447. PubMed ID: 30338812 [Abstract] [Full Text] [Related]
16. Effects of photobiomodulation combined with MSCs transplantation on the repair of spinal cord injury in rat. Chen H, Wang Y, Tu W, Wang H, Yin H, Sha H, Li Y. J Cell Physiol; 2021 Feb 14; 236(2):921-930. PubMed ID: 32583437 [Abstract] [Full Text] [Related]
17. Human umbilical cord mesenchymal stem cell conditioned medium attenuates renal fibrosis by reducing inflammation and epithelial-to-mesenchymal transition via the TLR4/NF-κB signaling pathway in vivo and in vitro. Liu B, Ding F, Hu D, Zhou Y, Long C, Shen L, Zhang Y, Zhang D, Wei G. Stem Cell Res Ther; 2018 Jan 12; 9(1):7. PubMed ID: 29329595 [Abstract] [Full Text] [Related]
18. Extracellular vesicles derived from CD73 modified human umbilical cord mesenchymal stem cells ameliorate inflammation after spinal cord injury. Zhai X, Chen K, Yang H, Li B, Zhou T, Wang H, Zhou H, Chen S, Zhou X, Wei X, Bai Y, Li M. J Nanobiotechnology; 2021 Sep 08; 19(1):274. PubMed ID: 34496892 [Abstract] [Full Text] [Related]
19. Tanshinone IIA promotes the differentiation of bone marrow mesenchymal stem cells into neuronal-like cells in a spinal cord injury model. Zhang XM, Ma J, Sun Y, Yu BQ, Jiao ZM, Wang D, Yu MY, Li JY, Fu J. J Transl Med; 2018 Jul 13; 16(1):193. PubMed ID: 30001730 [Abstract] [Full Text] [Related]
20. Harnessing the Secretome of Mesenchymal Stromal Cells for Traumatic Spinal Cord Injury: Multicell Comparison and Assessment of In Vivo Efficacy. Vawda R, Badner A, Hong J, Mikhail M, Dragas R, Xhima K, Jose A, Fehlings MG. Stem Cells Dev; 2020 Nov 15; 29(22):1429-1443. PubMed ID: 32962528 [Abstract] [Full Text] [Related] Page: [Next] [New Search]