These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
136 related items for PubMed ID: 38666352
21. The Medicago truncatula PIN2 auxin transporter mediates basipetal auxin transport but is not necessary for nodulation. Ng JLP, Welvaert A, Wen J, Chen R, Mathesius U. J Exp Bot; 2020 Feb 19; 71(4):1562-1573. PubMed ID: 31738415 [Abstract] [Full Text] [Related]
22. Wuschel-related homeobox5 gene expression and interaction of CLE peptides with components of the systemic control add two pieces to the puzzle of autoregulation of nodulation. Osipova MA, Mortier V, Demchenko KN, Tsyganov VE, Tikhonovich IA, Lutova LA, Dolgikh EA, Goormachtig S. Plant Physiol; 2012 Mar 19; 158(3):1329-41. PubMed ID: 22232385 [Abstract] [Full Text] [Related]
23. miR396 affects mycorrhization and root meristem activity in the legume Medicago truncatula. Bazin J, Khan GA, Combier JP, Bustos-Sanmamed P, Debernardi JM, Rodriguez R, Sorin C, Palatnik J, Hartmann C, Crespi M, Lelandais-Brière C. Plant J; 2013 Jun 19; 74(6):920-34. PubMed ID: 23566016 [Abstract] [Full Text] [Related]
24. miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. Marin E, Jouannet V, Herz A, Lokerse AS, Weijers D, Vaucheret H, Nussaume L, Crespi MD, Maizel A. Plant Cell; 2010 Apr 19; 22(4):1104-17. PubMed ID: 20363771 [Abstract] [Full Text] [Related]
28. GRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling in Medicago truncatula. Hirsch S, Kim J, Muñoz A, Heckmann AB, Downie JA, Oldroyd GE. Plant Cell; 2009 Feb 19; 21(2):545-57. PubMed ID: 19252081 [Abstract] [Full Text] [Related]
29. Reprogramming of Root Cells during Nitrogen-Fixing Symbiosis Involves Dynamic Polysome Association of Coding and Noncoding RNAs. Traubenik S, Reynoso MA, Hobecker K, Lancia M, Hummel M, Rosen B, Town C, Bailey-Serres J, Blanco F, Zanetti ME. Plant Cell; 2020 Feb 19; 32(2):352-373. PubMed ID: 31748328 [Abstract] [Full Text] [Related]
30. The B-3 ethylene response factor MtERF1-1 mediates resistance to a subset of root pathogens in Medicago truncatula without adversely affecting symbiosis with rhizobia. Anderson JP, Lichtenzveig J, Gleason C, Oliver RP, Singh KB. Plant Physiol; 2010 Oct 19; 154(2):861-73. PubMed ID: 20713618 [Abstract] [Full Text] [Related]
37. Light-sensitive short hypocotyl genes confer symbiotic nodule identity in the legume Medicago truncatula. Lee T, Orvosova M, Batzenschlager M, Bueno Batista M, Bailey PC, Mohd-Radzman NA, Gurzadyan A, Stuer N, Mysore KS, Wen J, Ott T, Oldroyd GED, Schiessl K. Curr Biol; 2024 Feb 26; 34(4):825-840.e7. PubMed ID: 38301650 [Abstract] [Full Text] [Related]
39. LACK OF SYMBIONT ACCOMMODATION controls intracellular symbiont accommodation in root nodule and arbuscular mycorrhizal symbiosis in Lotus japonicus. Suzaki T, Takeda N, Nishida H, Hoshino M, Ito M, Misawa F, Handa Y, Miura K, Kawaguchi M. PLoS Genet; 2019 Jan 26; 15(1):e1007865. PubMed ID: 30605473 [Abstract] [Full Text] [Related]
40. The peptide-encoding MtRGF3 gene negatively regulates nodulation of Medicago truncatula. Li Q, Li M, Zhang D, Yu L, Yan J, Luo L. Biochem Biophys Res Commun; 2020 Feb 26; 523(1):66-71. PubMed ID: 31831172 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]