These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
247 related items for PubMed ID: 38679271
21. Flexible conductive silk-PPy hydrogel toward wearable electronic strain sensors. Han Y, Sun L, Wen C, Wang Z, Dai J, Shi L. Biomed Mater; 2022 Feb 21; 17(2):. PubMed ID: 35147523 [Abstract] [Full Text] [Related]
22. Mussel-Inspired Flexible, Wearable, and Self-Adhesive Conductive Hydrogels for Strain Sensors. Lv R, Bei Z, Huang Y, Chen Y, Zheng Z, You Q, Zhu C, Cao Y. Macromol Rapid Commun; 2020 Jan 21; 41(2):e1900450. PubMed ID: 31778252 [Abstract] [Full Text] [Related]
23. Conductive Peptide-Based MXene Hydrogel as a Piezoresistive Sensor. Cohen-Gerassi D, Messer O, Finkelstein-Zuta G, Aviv M, Favelukis B, Shacham-Diamand Y, Sokol M, Adler-Abramovich L. Adv Healthc Mater; 2024 Aug 21; 13(20):e2303632. PubMed ID: 38536070 [Abstract] [Full Text] [Related]
24. High-performance and frost-resistance MXene co-ionic liquid conductive hydrogel printed by electrohydrodynamic for flexible strain sensor. Wan Y, Zhang L, Wu T, Tang C, Song H, Cao Q. J Colloid Interface Sci; 2024 Sep 21; 669():688-698. PubMed ID: 38733880 [Abstract] [Full Text] [Related]
25. Highly Stretchable, Self-Healable, Ultrasensitive Strain and Proximity Sensors Based on Skin-Inspired Conductive Film for Human Motion Monitoring. Du Y, Yu G, Dai X, Wang X, Yao B, Kong J. ACS Appl Mater Interfaces; 2020 Nov 18; 12(46):51987-51998. PubMed ID: 33142058 [Abstract] [Full Text] [Related]
27. Preparation of PAA/PAM/MXene/TA hydrogel with antioxidant, healable ability as strain sensor. Qin M, Yuan W, Zhang X, Cheng Y, Xu M, Wei Y, Chen W, Huang D. Colloids Surf B Biointerfaces; 2022 Jun 18; 214():112482. PubMed ID: 35366577 [Abstract] [Full Text] [Related]
29. A Mussel-Inspired Conductive, Self-Adhesive, and Self-Healable Tough Hydrogel as Cell Stimulators and Implantable Bioelectronics. Han L, Lu X, Wang M, Gan D, Deng W, Wang K, Fang L, Liu K, Chan CW, Tang Y, Weng LT, Yuan H. Small; 2017 Jan 18; 13(2):. PubMed ID: 27779812 [Abstract] [Full Text] [Related]
31. A porous self-healing hydrogel with an island-bridge structure for strain and pressure sensors. Zhang Y, Ren E, Li A, Cui C, Guo R, Tang H, Xiao H, Zhou M, Qin W, Wang X, Liu L. J Mater Chem B; 2021 Jan 28; 9(3):719-730. PubMed ID: 33306084 [Abstract] [Full Text] [Related]
32. Balancing the mechanical, electronic, and self-healing properties in conductive self-healing hydrogel for wearable sensor applications. Su G, Yin S, Guo Y, Zhao F, Guo Q, Zhang X, Zhou T, Yu G. Mater Horiz; 2021 Jun 01; 8(6):1795-1804. PubMed ID: 34846508 [Abstract] [Full Text] [Related]
33. Recent advances in lignosulfonate filled hydrogel for flexible wearable electronics: A mini review. Wang Y, Liu H, Ji X, Wang Q, Tian Z, Liu S. Int J Biol Macromol; 2022 Jul 01; 212():393-401. PubMed ID: 35618087 [Abstract] [Full Text] [Related]
34. Starch/ionic liquid/hydrophobic association hydrogel with high stretchability, fatigue resistance, self-recovery and conductivity for sensitive wireless wearable sensors. Shen J, Lu L, He R, Ye Q, Yuan C, Guo L, Zhao M, Cui B. Carbohydr Polym; 2024 Dec 15; 346():122608. PubMed ID: 39245492 [Abstract] [Full Text] [Related]
35. A tough, stretchable, adhesive and electroconductive polyacrylamide hydrogel sensor incorporated with sulfonated nanocellulose and carbon nanotubes. Deng W, Zhang Y, Wu M, Liu C, Rahmaninia M, Tang Y, Li B. Int J Biol Macromol; 2024 Nov 15; 279(Pt 2):135165. PubMed ID: 39218191 [Abstract] [Full Text] [Related]
36. Ionically Conductive Hydrogel with Fast Self-Recovery and Low Residual Strain as Strain and Pressure Sensors. Sun X, Yao F, Wang C, Qin Z, Zhang H, Yu Q, Zhang H, Dong X, Wei Y, Li J. Macromol Rapid Commun; 2020 Jul 15; 41(13):e2000185. PubMed ID: 32500629 [Abstract] [Full Text] [Related]
37. Ultrastretchable, Self-Healing Conductive Hydrogel-Based Triboelectric Nanogenerators for Human-Computer Interaction. Zhang H, Zhang D, Wang Z, Xi G, Mao R, Ma Y, Wang D, Tang M, Xu Z, Luan H. ACS Appl Mater Interfaces; 2023 Feb 01; 15(4):5128-5138. PubMed ID: 36658100 [Abstract] [Full Text] [Related]
38. Mxene Reinforced Supramolecular Hydrogels with High Strength, Stretchability, and Reliable Conductivity for Sensitive Strain Sensors. Zeng Z, Yu S, Guo C, Lu D, Geng Z, Pei D. Macromol Rapid Commun; 2022 Aug 01; 43(15):e2200103. PubMed ID: 35319127 [Abstract] [Full Text] [Related]
39. Multifunctional Conductive Hydrogel/Thermochromic Elastomer Hybrid Fibers with a Core-Shell Segmental Configuration for Wearable Strain and Temperature Sensors. Chen J, Wen H, Zhang G, Lei F, Feng Q, Liu Y, Cao X, Dong H. ACS Appl Mater Interfaces; 2020 Feb 12; 12(6):7565-7574. PubMed ID: 31971764 [Abstract] [Full Text] [Related]
40. A Highly Stretchable, Conductive, and Transparent Bioadhesive Hydrogel as a Flexible Sensor for Enhanced Real-Time Human Health Monitoring. Roy A, Zenker S, Jain S, Afshari R, Oz Y, Zheng Y, Annabi N. Adv Mater; 2024 Aug 12; 36(35):e2404225. PubMed ID: 38970527 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]