These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
121 related items for PubMed ID: 38682261
1. A rapid and sensitive aptamer-based biosensor for beta-lactoglobulin in milk. Liu A, Jiang M, Wu Y, Guo H, Kong L, Chen Z, Luo Z. Anal Methods; 2024 May 16; 16(19):3039-3046. PubMed ID: 38682261 [Abstract] [Full Text] [Related]
2. In vitro selection of DNA aptamers targeting β-lactoglobulin and their integration in graphene-based biosensor for the detection of milk allergen. Eissa S, Zourob M. Biosens Bioelectron; 2017 May 15; 91():169-174. PubMed ID: 28006685 [Abstract] [Full Text] [Related]
3. Bio-Layer Interferometry-Based SELEX and Label-Free Detection of Patulin Using Generated Aptamer. Mukherjee M, Appaiah P, Sistla S, Bk B, Bhatt P. J Agric Food Chem; 2022 May 25; 70(20):6239-6246. PubMed ID: 35546052 [Abstract] [Full Text] [Related]
4. Highly Sensitive β-Lactoglobulin Fluorescent Aptamer Biosensors Based on Tungsten Disulfide Nanosheets and DNase I-Assisted Signal Amplification. Wang Y, Chen S, Chen W, Wang J, Li K, Hong C, Zhang K, Chen Q. Molecules; 2023 Apr 16; 28(8):. PubMed ID: 37110736 [Abstract] [Full Text] [Related]
5. Screening of broad-spectrum aptamer and development of electrochemical aptasensor for simultaneous detection of penicillin antibiotics in milk. Hu M, Yue F, Dong J, Tao C, Bai M, Liu M, Zhai S, Chen S, Liu W, Qi G, Vrublevsky I, Sun X, Guo Y. Talanta; 2024 Mar 01; 269():125508. PubMed ID: 38070284 [Abstract] [Full Text] [Related]
6. An electrochemical aptasensor for the milk allergen β-lactoglobulin detection based on a target-induced nicking site reconstruction strategy. Qiu Q, Ni X, Liu T, Li Z, An X, Chen X. Analyst; 2021 Nov 08; 146(22):6808-6814. PubMed ID: 34647930 [Abstract] [Full Text] [Related]
7. An indirect competitive assay-based aptasensor for detection of oxytetracycline in milk. Kim CH, Lee LP, Min JR, Lim MW, Jeong SH. Biosens Bioelectron; 2014 Jan 15; 51():426-30. PubMed ID: 24011458 [Abstract] [Full Text] [Related]
8. Biolayer interferometry-SELEX for Shiga toxin antigenic-peptide aptamers & detection via chitosan-WSe2 aptasensor. Kaur H, Shorie M, Sabherwal P. Biosens Bioelectron; 2020 Nov 01; 167():112498. PubMed ID: 32814208 [Abstract] [Full Text] [Related]
9. Design of an Aptamer-Amphiphile for the Detection of β-Lactoglobulin on a Liquid Crystal Interface. Clemente APB, Kuang H, Shabana AM, Labuza TP, Kokkoli E. Bioconjug Chem; 2019 Nov 20; 30(11):2763-2770. PubMed ID: 31589417 [Abstract] [Full Text] [Related]
10. Development and characterization of DNA aptamers against florfenicol: Fabrication of a sensitive fluorescent aptasensor for specific detection of florfenicol in milk. Sadeghi AS, Mohsenzadeh M, Abnous K, Taghdisi SM, Ramezani M. Talanta; 2018 May 15; 182():193-201. PubMed ID: 29501140 [Abstract] [Full Text] [Related]
11. Gonyautoxin 1/4 aptamers with high-affinity and high-specificity: From efficient selection to aptasensor application. Gao S, Hu B, Zheng X, Cao Y, Liu D, Sun M, Jiao B, Wang L. Biosens Bioelectron; 2016 May 15; 79():938-44. PubMed ID: 26802576 [Abstract] [Full Text] [Related]
12. Cell-SELEX for aptamer discovery and its utilization in constructing electrochemical biosensor for rapid and highly sensitive detection of Legionella pneumophila serogroup 1. Shaukat A, Chrouda A, Sadaf S, Alhamlan F, Eissa S, Zourob M. Sci Rep; 2024 Jun 19; 14(1):14132. PubMed ID: 38898115 [Abstract] [Full Text] [Related]
13. Development of fluorescent aptasensor for detection of acephate by utilizing graphene oxide platform. Singh P, Kumar S, Verma SK. Talanta; 2023 Jan 15; 252():123843. PubMed ID: 36049338 [Abstract] [Full Text] [Related]
14. Rapid label-free colorimetric dual-functional aptasensor for β-lactoglobulin detection based on a rational tailoring strategy. Wang X, Chu H, Xu X, Tian J, Wu Y, Xu W, Tian H, Zhu L. Biosens Bioelectron; 2022 Jul 15; 208():114223. PubMed ID: 35378457 [Abstract] [Full Text] [Related]
15. Selection of DNA aptamers and establishment of an effective aptasensor for highly sensitive detection of cefquinome residues in milk. Wang L, Wang C, Li H. Analyst; 2018 Jun 25; 143(13):3202-3208. PubMed ID: 29872833 [Abstract] [Full Text] [Related]
16. Aptamer based fluorometric β-lactoglobulin assay based on the use of magnetic nanoparticles and carbon dots. Shi M, Cen Y, Sohail M, Xu G, Wei F, Ma Y, Xu X, Ma Y, Song Y, Hu Q. Mikrochim Acta; 2017 Dec 08; 185(1):40. PubMed ID: 29594678 [Abstract] [Full Text] [Related]
17. A fluorescence detection method for the determination of β-lactoglobulin in foods. Yang J, Zhang Y, Lu Y. Anal Methods; 2022 May 19; 14(19):1872-1879. PubMed ID: 35506444 [Abstract] [Full Text] [Related]
18. Non-enzymatic detection of urea using unmodified gold nanoparticles based aptasensor. Kumar P, Lambadi PR, Navani NK. Biosens Bioelectron; 2015 Oct 15; 72():340-7. PubMed ID: 26002019 [Abstract] [Full Text] [Related]
19. A label-free fluorescent magnetic dual-aptasensor based on aptamer allosteric regulation of β-lactoglobulin. Yang H, Zhu L, Wang X, Kang S, Li T, Chen K, Dong Y, Xu W. Talanta; 2024 May 01; 271():125664. PubMed ID: 38237281 [Abstract] [Full Text] [Related]
20. High-efficiency selection of aptamers for bovine lactoferrin by capillary electrophoresis and its aptasensor application in milk powder. Zhu C, Li L, Yang G, Irfan M, Wang Z, Fang S, Qu F. Talanta; 2019 Dec 01; 205():120088. PubMed ID: 31450439 [Abstract] [Full Text] [Related] Page: [Next] [New Search]