These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


174 related items for PubMed ID: 38690985

  • 1. Silk-Based 3D Porous Scaffolds for Tissue Engineering.
    Xiao M, Yao J, Shao Z, Chen X.
    ACS Biomater Sci Eng; 2024 May 13; 10(5):2827-2840. PubMed ID: 38690985
    [Abstract] [Full Text] [Related]

  • 2. Preparation of porous scaffolds from silk fibroin extracted from the silk gland of Bombyx mori (B. mori).
    Yang M, Shuai Y, He W, Min S, Zhu L.
    Int J Mol Sci; 2012 May 13; 13(6):7762-7775. PubMed ID: 22837725
    [Abstract] [Full Text] [Related]

  • 3. Natural biomacromolecule based composite scaffolds from silk fibroin, gelatin and chitosan toward tissue engineering applications.
    Asadpour S, Kargozar S, Moradi L, Ai A, Nosrati H, Ai J.
    Int J Biol Macromol; 2020 Jul 01; 154():1285-1294. PubMed ID: 31733251
    [Abstract] [Full Text] [Related]

  • 4. Silk fiber reinforcement modulates in vitro chondrogenesis in 3D composite scaffolds.
    Singh YP, Adhikary M, Bhardwaj N, Bhunia BK, Mandal BB.
    Biomed Mater; 2017 Jul 24; 12(4):045012. PubMed ID: 28737162
    [Abstract] [Full Text] [Related]

  • 5. The synergistic effects of 3-D porous silk fibroin matrix scaffold properties and hydrodynamic environment in cartilage tissue regeneration.
    Wang Y, Bella E, Lee CS, Migliaresi C, Pelcastre L, Schwartz Z, Boyan BD, Motta A.
    Biomaterials; 2010 Jun 24; 31(17):4672-81. PubMed ID: 20303584
    [Abstract] [Full Text] [Related]

  • 6. Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications.
    Yan LP, Oliveira JM, Oliveira AL, Caridade SG, Mano JF, Reis RL.
    Acta Biomater; 2012 Jan 24; 8(1):289-301. PubMed ID: 22019518
    [Abstract] [Full Text] [Related]

  • 7. [Recent progress on silk fibroin as tissue engineering biomaterials].
    Wang H, Li M.
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Feb 24; 22(2):192-5. PubMed ID: 18365617
    [Abstract] [Full Text] [Related]

  • 8. Optimization and evaluation of silk fibroin-chitosan freeze-dried porous scaffolds for cartilage tissue engineering application.
    Vishwanath V, Pramanik K, Biswas A.
    J Biomater Sci Polym Ed; 2016 Feb 24; 27(7):657-74. PubMed ID: 26830046
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Silk scaffolds connected with different naturally occurring biomaterials for prostate cancer cell cultivation in 3D.
    Bäcker A, Erhardt O, Wietbrock L, Schel N, Göppert B, Dirschka M, Abaffy P, Sollich T, Cecilia A, Gruhl FJ.
    Biopolymers; 2017 Feb 24; 107(2):70-79. PubMed ID: 27696348
    [Abstract] [Full Text] [Related]

  • 12. A Review of Structure Construction of Silk Fibroin Biomaterials from Single Structures to Multi-Level Structures.
    Qi Y, Wang H, Wei K, Yang Y, Zheng RY, Kim IS, Zhang KQ.
    Int J Mol Sci; 2017 Mar 03; 18(3):. PubMed ID: 28273799
    [Abstract] [Full Text] [Related]

  • 13. Suturable regenerated silk fibroin scaffold reinforced with 3D-printed polycaprolactone mesh: biomechanical performance and subcutaneous implantation.
    Cengiz IF, Pereira H, Espregueira-Mendes J, Kwon IK, Reis RL, Oliveira JM.
    J Mater Sci Mater Med; 2019 May 24; 30(6):63. PubMed ID: 31127379
    [Abstract] [Full Text] [Related]

  • 14. Entrapped in cage (EiC) scaffolds of 3D-printed polycaprolactone and porous silk fibroin for meniscus tissue engineering.
    Cengiz IF, Maia FR, da Silva Morais A, Silva-Correia J, Pereira H, Canadas RF, Espregueira-Mendes J, Kwon IK, Reis RL, Oliveira JM.
    Biofabrication; 2020 Mar 13; 12(2):025028. PubMed ID: 32069441
    [Abstract] [Full Text] [Related]

  • 15. Bombyx mori silk-based materials with implication in skin repair: Sericin versus regenerated silk fibroin.
    Su D, Ding S, Shi W, Huang X, Jiang L.
    J Biomater Appl; 2019 Jul 13; 34(1):36-46. PubMed ID: 31027446
    [No Abstract] [Full Text] [Related]

  • 16. In vivo evaluation of modified silk fibroin scaffolds with a mimicked microenvironment of fibronectin/decellularized pulp tissue for maxillofacial surgery.
    Thai TH, Nuntanaranont T, Kamolmatyakul S, Meesane J.
    Biomed Mater; 2017 Nov 22; 13(1):015009. PubMed ID: 29165324
    [Abstract] [Full Text] [Related]

  • 17. Three-Dimensional Printing of Customized Scaffolds with Polycaprolactone-Silk Fibroin Composites and Integration of Gingival Tissue-Derived Stem Cells for Personalized Bone Therapy.
    Bojedla SSR, Yeleswarapu S, Alwala AM, Nikzad M, Masood SH, Riza S, Pati F.
    ACS Appl Bio Mater; 2022 Sep 19; 5(9):4465-4479. PubMed ID: 35994743
    [Abstract] [Full Text] [Related]

  • 18. Non-bioengineered silk fibroin protein 3D scaffolds for potential biotechnological and tissue engineering applications.
    Mandal BB, Kundu SC.
    Macromol Biosci; 2008 Sep 09; 8(9):807-18. PubMed ID: 18702171
    [Abstract] [Full Text] [Related]

  • 19. In vivo degradation of three-dimensional silk fibroin scaffolds.
    Wang Y, Rudym DD, Walsh A, Abrahamsen L, Kim HJ, Kim HS, Kirker-Head C, Kaplan DL.
    Biomaterials; 2008 Sep 09; 29(24-25):3415-28. PubMed ID: 18502501
    [Abstract] [Full Text] [Related]

  • 20. Silk fibroin for skin injury repair: Where do things stand?
    Gholipourmalekabadi M, Sapru S, Samadikuchaksaraei A, Reis RL, Kaplan DL, Kundu SC.
    Adv Drug Deliv Rev; 2020 Jan 01; 153():28-53. PubMed ID: 31678360
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.