These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Peroxymonosulfate Activation by Fe@N Co-Doped Biochar for the Degradation of Sulfamethoxazole: The Key Role of Pyrrolic N. Liu T, Li C, Chen X, Chen Y, Cui K, Wang D, Wei Q. Int J Mol Sci; 2024 Sep 30; 25(19):. PubMed ID: 39408859 [Abstract] [Full Text] [Related]
3. Activation of peroxymonosulfate by Fe,N co-doped walnut shell biochar for the degradation of sulfamethoxazole: Performance and mechanisms. Xue Y, Kamali M, Costa MEV, Thompson IP, Huang W, Rossi B, Appels L, Dewil R. Environ Pollut; 2024 Aug 15; 355():124018. PubMed ID: 38697252 [Abstract] [Full Text] [Related]
4. Promoting oxygen vacancies utility for tetracycline degradation via peroxymonosulfate activation by reduced Mg-doped Co3O4: Kinetics and key role of electron transfer pathway. Wang C, Chang L, Zhang X, Chai H, Huang Y. Environ Res; 2024 Jul 01; 252(Pt 2):118892. PubMed ID: 38599451 [Abstract] [Full Text] [Related]
5. Peroxymonosulfate activation by walnut shell activated carbon supported nano zero-valent iron for the degradation of tetracycline: Performance, degradation pathway and mechanism. Duan P, Kong F, Fu X, Han Z, Sun G, Yu Z, Wang S, Cui Y. Environ Res; 2024 Mar 15; 245():117971. PubMed ID: 38145740 [Abstract] [Full Text] [Related]
8. Fe-doped biochar derived from waste sludge for degradation of rhodamine B via enhancing activation of peroxymonosulfate. Zang T, Wang H, Liu Y, Dai L, Zhou S, Ai S. Chemosphere; 2020 Dec 15; 261():127616. PubMed ID: 32739688 [Abstract] [Full Text] [Related]
9. Peroxymonosulfate activation by nitrogen-doped herb residue biochar for the degradation of tetracycline. Li X, Wang J, Xia L, Cheng R, Chen J, Shang J. J Environ Manage; 2023 Feb 15; 328():117028. PubMed ID: 36525737 [Abstract] [Full Text] [Related]
13. Sulfur-decorated Fe/C composite synthesized from MIL-88A(Fe) for peroxymonosulfate activation towards tetracycline degradation: Multiple active sites and non-radical pathway dominated mechanism. Qian J, Zhang Y, Chen Z, Yu R, Ye Y, Ma R, Li K, Wang L, Wang D, Ni BJ. J Environ Manage; 2023 Oct 15; 344():118440. PubMed ID: 37343477 [Abstract] [Full Text] [Related]
14. Activation of peroxymonosulfate by β-FeOOH@Cia-MoS2 for enhancing degradation of tetracycline: Significant roles of surface functional groups and Fe/Mo redox reactions. Wang J, He F, Fang J, Yu R, Jia Z, Zhou H. Chemosphere; 2024 Sep 15; 364():143152. PubMed ID: 39173836 [Abstract] [Full Text] [Related]
15. Electro-activating of peroxymonosulfate via boron and sulfur co-doped macroporous carbon nanofibers cathode for high-efficient degradation of levofloxacin. Li X, Hu Y, Zhang C, Xiao C, Cheng J, Chen Y. J Hazard Mater; 2023 Jan 15; 442():130016. PubMed ID: 36179625 [Abstract] [Full Text] [Related]
17. High efficiency degradation of tetracycline by peroxymonosulfate activated with Fe/NC catalysts: Performance, intermediates, stability and mechanism. Peng X, Wu J, Zhao Z, Wang X, Dai H, Li Y, Wei Y, Xu G, Hu F. Environ Res; 2022 Apr 01; 205():112538. PubMed ID: 34919957 [Abstract] [Full Text] [Related]
18. Insight into enhanced degradation of tetracycline over peroxymonosulfate activated via biochar-based nanocomposite: performance and mechanism. Song T, Gao Y, Ye J, Zhang X, Su R, Luo J. Environ Sci Pollut Res Int; 2023 Feb 01; 30(10):27394-27408. PubMed ID: 36378386 [Abstract] [Full Text] [Related]
20. Multi-chamber membrane capacitive deionization coupled with peroxymonosulfate to achieve simultaneous removal of tetracycline and peroxymonosulfate reaction byproducts. Yu M, Yang C, Chen M, Li Y, Kang K, Wang C, Niu J, Mu S, Zhang J, Liu C, Ma J. J Hazard Mater; 2024 Sep 05; 476():135036. PubMed ID: 38936188 [Abstract] [Full Text] [Related] Page: [Next] [New Search]