These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
170 related items for PubMed ID: 38692546
41. Green synthesis of silver nanoparticles using Carum copticum: Assessment of its quorum sensing and biofilm inhibitory potential against gram negative bacterial pathogens. Qais FA, Shafiq A, Ahmad I, Husain FM, Khan RA, Hassan I. Microb Pathog; 2020 Jul; 144():104172. PubMed ID: 32224208 [Abstract] [Full Text] [Related]
42. Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity. Sadeghi B, Rostami A, Momeni SS. Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan 05; 134():326-32. PubMed ID: 25022505 [Abstract] [Full Text] [Related]
43. Characterization and Evaluation of Antimicrobial Potential of Trigonella incise (Linn) Mediated Biosynthesized Silver Nanoparticles. Fozia F, Ahmad N, Buoharee ZA, Ahmad I, Aslam M, Wahab A, Ullah R, Ahmad S, Alotaibi A, Tariq A. Molecules; 2022 Jul 20; 27(14):. PubMed ID: 35889490 [Abstract] [Full Text] [Related]
44. Gum Arabic assisted the biomass synthesis of bimetallic silver copper oxide nanoparticles using gamma-rays for improving bacterial and viral wound healing: Promising antimicrobial activity against foot and mouth disease. El-Batal AI, Eisa MI, Saad MAM, Fakhry HM, El-Neshwy WM, Abdel-Fatah SS, Mosallam FM, El-Sayyad GS. Int J Biol Macromol; 2024 Mar 20; 262(Pt 2):130010. PubMed ID: 38336320 [Abstract] [Full Text] [Related]
45. Inside-outside Ag nanoparticles-loaded polylactic acid electrospun fiber for long-term antibacterial and bone regeneration. Liu F, Cheng X, Xiao L, Wang Q, Yan K, Su Z, Wang L, Ma C, Wang Y. Int J Biol Macromol; 2021 Jan 15; 167():1338-1348. PubMed ID: 33232699 [Abstract] [Full Text] [Related]
46. Green Synthesis of Silver-Peptide Nanoparticles Generated by the Photoionization Process for Anti-Biofilm Application. Seferji KA, Susapto HH, Khan BK, Rehman ZU, Abbas M, Emwas AH, Hauser CAE. ACS Appl Bio Mater; 2021 Dec 20; 4(12):8522-8535. PubMed ID: 35005954 [Abstract] [Full Text] [Related]
47. Antibacterial and antibiofilm potential of silver nanoparticles against antibiotic-sensitive and multidrug-resistant Pseudomonas aeruginosa strains. de Lacerda Coriolano D, de Souza JB, Bueno EV, Medeiros SMFRDS, Cavalcanti IDL, Cavalcanti IMF. Braz J Microbiol; 2021 Mar 20; 52(1):267-278. PubMed ID: 33231865 [Abstract] [Full Text] [Related]
48. One-step green synthesis of antibacterial silver nanoparticles embedded in electrospun cyclodextrin nanofibers. Celebioglu A, Topuz F, Yildiz ZI, Uyar T. Carbohydr Polym; 2019 Mar 01; 207():471-479. PubMed ID: 30600030 [Abstract] [Full Text] [Related]
49. Graphene Oxide-Silver-Coated Sulfonated Polyetheretherketone (Ag/GO-SPEEK): A Broad-Spectrum Antibacterial Artificial Bone Implants. Wei W, Zhu J, Liu Y, Chen L, Zhu W, Ji H, Cheng Z. ACS Appl Bio Mater; 2024 Jun 17; 7(6):3981-3990. PubMed ID: 38781457 [Abstract] [Full Text] [Related]
50. Does Conjugation of Silver Nanoparticles with Thiosemicarbazide Increase Their Antibacterial Properties? Honarmand T, Sharif AP, Salehzadeh A, Jalali A, Nikokar I. Microb Drug Resist; 2022 Mar 17; 28(3):293-305. PubMed ID: 35005985 [Abstract] [Full Text] [Related]
51. Effect of (Ag, Zn) co-doping on structural, optical and bactericidal properties of CuO nanoparticles synthesized by a microwave-assisted method. Thakur N, Anu, Kumar K, Kumar A. Dalton Trans; 2021 May 14; 50(18):6188-6203. PubMed ID: 33871499 [Abstract] [Full Text] [Related]
52. Potential role of metal nanoparticles in treatment of peri-implant mucositis and peri-implantitis. Hosseini Hooshiar M, Mozaffari A, Hamed Ahmed M, Abdul Kareem R, Jaber Zrzo A, Salah Mansoor A, H Athab Z, Parhizgar Z, Amini P. Biomed Eng Online; 2024 Oct 12; 23(1):101. PubMed ID: 39396020 [Abstract] [Full Text] [Related]
53. Redox/pH dual-controlled release of chlorhexidine and silver ions from biodegradable mesoporous silica nanoparticles against oral biofilms. Lu MM, Ge Y, Qiu J, Shao D, Zhang Y, Bai J, Zheng X, Chang ZM, Wang Z, Dong WF, Tang CB. Int J Nanomedicine; 2018 Oct 12; 13():7697-7709. PubMed ID: 30538453 [Abstract] [Full Text] [Related]
54. Antimicrobial efficacy of liposome-encapsulated silver ions and tea tree oil against Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans. Low WL, Martin C, Hill DJ, Kenward MA. Lett Appl Microbiol; 2013 Jul 12; 57(1):33-9. PubMed ID: 23581401 [Abstract] [Full Text] [Related]
55. Characterization of phytoconstituents and evaluation of antimicrobial activity of silver-extract nanoparticles synthesized from Momordica charantia fruit extract. Rashid MMO, Akhter KN, Chowdhury JA, Hossen F, Hussain MS, Hossain MT. BMC Complement Altern Med; 2017 Jun 26; 17(1):336. PubMed ID: 28651578 [Abstract] [Full Text] [Related]
56. Antibacterial efficacy of silver nanoparticles of different sizes, surface conditions and synthesis methods. Samberg ME, Orndorff PE, Monteiro-Riviere NA. Nanotoxicology; 2011 Jun 26; 5(2):244-53. PubMed ID: 21034371 [Abstract] [Full Text] [Related]
57. Synthesis of Antimicrobial Chitosan-Silver Nanoparticles Mediated by Reusable Chitosan Fungal Beads. Hermosilla E, Díaz M, Vera J, Contreras MJ, Leal K, Salazar R, Barrientos L, Tortella G, Rubilar O. Int J Mol Sci; 2023 Jan 24; 24(3):. PubMed ID: 36768640 [Abstract] [Full Text] [Related]
58. Sonochemically-Produced Metal-Containing Polydopamine Nanoparticles and Their Antibacterial and Antibiofilm Activity. Yeroslavsky G, Lavi R, Alishaev A, Rahimipour S. Langmuir; 2016 May 24; 32(20):5201-12. PubMed ID: 27133213 [Abstract] [Full Text] [Related]
59. Cellulose nanowhiskers decorated with silver nanoparticles as an additive to antibacterial polymers membranes fabricated by electrospinning. Spagnol C, Fragal EH, Pereira AGB, Nakamura CV, Muniz EC, Follmann HDM, Silva R, Rubira AF. J Colloid Interface Sci; 2018 Dec 01; 531():705-715. PubMed ID: 30077948 [Abstract] [Full Text] [Related]
60. Antibacterial and anti-adhesion effects of the silver nanoparticles-loaded poly(L-lactide) fibrous membrane. Liu S, Zhao J, Ruan H, Wang W, Wu T, Cui W, Fan C. Mater Sci Eng C Mater Biol Appl; 2013 Apr 01; 33(3):1176-82. PubMed ID: 23827557 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]