These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


235 related items for PubMed ID: 38693487

  • 1. Aspergillus flavus pangenome (AflaPan) uncovers novel aflatoxin and secondary metabolite associated gene clusters.
    Gangurde SS, Korani W, Bajaj P, Wang H, Fountain JC, Agarwal G, Pandey MK, Abbas HK, Chang PK, Holbrook CC, Kemerait RC, Varshney RK, Dutta B, Clevenger JP, Guo B.
    BMC Plant Biol; 2024 May 01; 24(1):354. PubMed ID: 38693487
    [Abstract] [Full Text] [Related]

  • 2. Two New Aspergillus flavus Reference Genomes Reveal a Large Insertion Potentially Contributing to Isolate Stress Tolerance and Aflatoxin Production.
    Fountain JC, Clevenger JP, Nadon B, Youngblood RC, Korani W, Chang PK, Starr D, Wang H, Isett B, Johnston HR, Wiggins R, Agarwal G, Chu Y, Kemerait RC, Pandey MK, Bhatnagar D, Ozias-Akins P, Varshney RK, Scheffler BE, Vaughn JN, Guo B.
    G3 (Bethesda); 2020 Oct 05; 10(10):3515-3531. PubMed ID: 32817124
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Genetic diversity of aflatoxin-producing Aspergillus flavus isolated from selected groundnut growing agro-ecological zones of Uganda.
    Acur A, Arias RS, Odongo S, Tuhaise S, Ssekandi J, Adriko J, Muhanguzi D, Buah S, Kiggundu A.
    BMC Microbiol; 2020 Aug 14; 20(1):252. PubMed ID: 32795262
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Comparative genome analysis of Aspergillus flavus clinically isolated in Japan.
    Toyotome T, Hamada S, Yamaguchi S, Takahashi H, Kondoh D, Takino M, Kanesaki Y, Kamei K.
    DNA Res; 2019 Feb 01; 26(1):95-103. PubMed ID: 30520983
    [Abstract] [Full Text] [Related]

  • 7. Comparative pangenome analysis of Aspergillus flavus and Aspergillus oryzae reveals their phylogenetic, genomic, and metabolic homogeneity.
    Han DM, Baek JH, Choi DG, Jeon MS, Eyun SI, Jeon CO.
    Food Microbiol; 2024 May 01; 119():104435. PubMed ID: 38225047
    [Abstract] [Full Text] [Related]

  • 8. Proteome analysis of Aspergillus flavus isolate-specific responses to oxidative stress in relationship to aflatoxin production capability.
    Fountain JC, Koh J, Yang L, Pandey MK, Nayak SN, Bajaj P, Zhuang WJ, Chen ZY, Kemerait RC, Lee RD, Chen S, Varshney RK, Guo B.
    Sci Rep; 2018 Feb 21; 8(1):3430. PubMed ID: 29467403
    [Abstract] [Full Text] [Related]

  • 9. Genetic fingerprinting and aflatoxin production of Aspergillus section Flavi associated with groundnut in eastern Ethiopia.
    Mohammed A, Faustinelli PC, Chala A, Dejene M, Fininsa C, Ayalew A, Ojiewo CO, Hoisington DA, Sobolev VS, Martínez-Castillo J, Arias RS.
    BMC Microbiol; 2021 Aug 28; 21(1):239. PubMed ID: 34454439
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Molecular characterization of atoxigenic strains for biological control of aflatoxins in Nigeria.
    Donner M, Atehnkeng J, Sikora RA, Bandyopadhyay R, Cotty PJ.
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2010 May 28; 27(5):576-90. PubMed ID: 20455156
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Aspergillus flavus genomics as a tool for studying the mechanism of aflatoxin formation.
    Yu J, Payne GA, Nierman WC, Machida M, Bennett JW, Campbell BC, Robens JF, Bhatnagar D, Dean RA, Cleveland TE.
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2008 Sep 28; 25(9):1152-7. PubMed ID: 19238624
    [Abstract] [Full Text] [Related]

  • 14. Genes differentially expressed by Aspergillus flavus strains after loss of aflatoxin production by serial transfers.
    Chang PK, Wilkinson JR, Horn BW, Yu J, Bhatnagar D, Cleveland TE.
    Appl Microbiol Biotechnol; 2007 Dec 28; 77(4):917-25. PubMed ID: 17955191
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Environmental distribution and genetic diversity of vegetative compatibility groups determine biocontrol strategies to mitigate aflatoxin contamination of maize by Aspergillus flavus.
    Atehnkeng J, Donner M, Ojiambo PS, Ikotun B, Augusto J, Cotty PJ, Bandyopadhyay R.
    Microb Biotechnol; 2016 Jan 28; 9(1):75-88. PubMed ID: 26503309
    [Abstract] [Full Text] [Related]

  • 18. Comparative Analysis of Multiple GWAS Results Identifies Metabolic Pathways Associated with Resistance to A. flavus Infection and Aflatoxin Accumulation in Maize.
    Warburton ML, Jeffers D, Smith JS, Scapim C, Uhdre R, Thrash A, Williams WP.
    Toxins (Basel); 2022 Oct 28; 14(11):. PubMed ID: 36355988
    [Abstract] [Full Text] [Related]

  • 19. Sexuality generates diversity in the aflatoxin gene cluster: evidence on a global scale.
    Moore GG, Elliott JL, Singh R, Horn BW, Dorner JW, Stone EA, Chulze SN, Barros GG, Naik MK, Wright GC, Hell K, Carbone I.
    PLoS Pathog; 2013 Oct 28; 9(8):e1003574. PubMed ID: 24009506
    [Abstract] [Full Text] [Related]

  • 20. Diversity of aflatoxin-producing fungi and their impact on food safety in sub-Saharan Africa.
    Probst C, Bandyopadhyay R, Cotty PJ.
    Int J Food Microbiol; 2014 Mar 17; 174():113-22. PubMed ID: 24480188
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.