These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
125 related items for PubMed ID: 38697212
41. Robustness of target dose coverage to motion uncertainties for scanned carbon ion beam tracking therapy of moving tumors. Eley JG, Newhauser WD, Richter D, Lüchtenborg R, Saito N, Bert C. Phys Med Biol; 2015 Feb 21; 60(4):1717-40. PubMed ID: 25650520 [Abstract] [Full Text] [Related]
42. Dosimetry auditing procedure with alanine dosimeters for light ion beam therapy. Ableitinger A, Vatnitsky S, Herrmann R, Bassler N, Palmans H, Sharpe P, Ecker S, Chaudhri N, Jäkel O, Georg D. Radiother Oncol; 2013 Jul 21; 108(1):99-106. PubMed ID: 23886591 [Abstract] [Full Text] [Related]
43. Real-time delivered dose assessment in carbon ion therapy of moving targets. Galeone C, Steinsberger T, Donetti M, Martire MC, Milian FM, Sacchi R, Vignati A, Volz L, Durante M, Giordanengo S, Graeff C. Phys Med Biol; 2024 Sep 30; 69(20):. PubMed ID: 39299266 [Abstract] [Full Text] [Related]
44. Experimental verification of a non-invasive method to monitor the lateral pencil beam position in an anthropomorphic phantom for carbon-ion radiotherapy. Félix-Bautista R, Gehrke T, Ghesquière-Diérickx L, Reimold M, Amato C, Turecek D, Jakubek J, Ellerbrock M, Martišíková M. Phys Med Biol; 2019 Sep 05; 64(17):175019. PubMed ID: 31239428 [Abstract] [Full Text] [Related]
45. A new treatment planning approach accounting for prompt gamma range verification and interfractional anatomical changes. Tian L, Landry G, Dedes G, Pinto M, Kamp F, Belka C, Parodi K. Phys Med Biol; 2020 Apr 29; 65(9):095005. PubMed ID: 32135530 [Abstract] [Full Text] [Related]
46. Probabilistic dose distribution from interfractional motion in carbon ion radiation therapy for prostate cancer shows rectum sparing with moderate target coverage degradation. Bridges D, Kawamura H, Kanai T. PLoS One; 2018 Apr 29; 13(8):e0203289. PubMed ID: 30169520 [Abstract] [Full Text] [Related]
47. Development of porous structure for broadening Bragg-peak in scanning carbon-ion radiotherapy: Monte Carlo simulation and experimental validation. Dong S, Sun J, Ming X, Weber U, Schuy C, Hu W, Sheng Y. Phys Med; 2024 Apr 29; 120():103325. PubMed ID: 38493583 [Abstract] [Full Text] [Related]
48. Secondary radiation measurements for particle therapy applications: charged particles produced by 4He and 12C ion beams in a PMMA target at large angle. Rucinski A, Battistoni G, Collamati F, De Lucia E, Faccini R, Frallicciardi PM, Mancini-Terracciano C, Marafini M, Mattei I, Muraro S, Paramatti R, Piersanti L, Pinci D, Russomando A, Sarti A, Sciubba A, Solfaroli Camillocci E, Toppi M, Traini G, Voena C, Patera V. Phys Med Biol; 2018 Mar 07; 63(5):055018. PubMed ID: 29265011 [Abstract] [Full Text] [Related]
49. Clinical dose assessment for scanned carbon-ion radiotherapy using linear energy transfer measurements and Monte Carlo simulations. Nakaji T, Kanai T, Takashina M, Matsumura A, Osaki K, Yagi M, Tsubouchi T, Hamatani N, Ogawa K. Phys Med Biol; 2022 Dec 15; 67(24):. PubMed ID: 36327456 [Abstract] [Full Text] [Related]
50. Fast Biological Modeling for Voxel-based Heavy Ion Treatment Planning Using the Mechanistic Repair-Misrepair-Fixation Model and Nuclear Fragment Spectra. Kamp F, Cabal G, Mairani A, Parodi K, Wilkens JJ, Carlson DJ. Int J Radiat Oncol Biol Phys; 2015 Nov 01; 93(3):557-68. PubMed ID: 26460998 [Abstract] [Full Text] [Related]
51. Helium ion beam imaging for image guided ion radiotherapy. Martišíková M, Gehrke T, Berke S, Aricò G, Jäkel O. Radiat Oncol; 2018 Jun 14; 13(1):109. PubMed ID: 29898746 [Abstract] [Full Text] [Related]
52. Automation and uncertainty analysis of a method for in-vivo range verification in particle therapy. Frey K, Unholtz D, Bauer J, Debus J, Min CH, Bortfeld T, Paganetti H, Parodi K. Phys Med Biol; 2014 Oct 07; 59(19):5903-19. PubMed ID: 25211629 [Abstract] [Full Text] [Related]
53. Evaluation of different fiducial markers for image-guided radiotherapy and particle therapy. Habermehl D, Henkner K, Ecker S, Jäkel O, Debus J, Combs SE. J Radiat Res; 2013 Jul 07; 54 Suppl 1(Suppl 1):i61-8. PubMed ID: 23824129 [Abstract] [Full Text] [Related]
54. Detecting perturbations of a radiation field inside a head-sized phantom exposed to therapeutic carbon-ion beams through charged-fragment tracking. Ghesquière-Diérickx L, Félix-Bautista R, Schlechter A, Kelleter L, Reimold M, Echner G, Soukup P, Jäkel O, Gehrke T, Martišíková M. Med Phys; 2022 Mar 07; 49(3):1776-1792. PubMed ID: 35073413 [Abstract] [Full Text] [Related]
55. Preliminary tests of dosimetric quality and projected therapeutic outcomes of multi-phase 4D radiotherapy with proton and carbon ion beams. Lis M, Newhauser W, Donetti M, Wolf M, Steinsberger T, Paz A, Graeff C. Phys Med Biol; 2021 Nov 23; 66(23):. PubMed ID: 34740202 [Abstract] [Full Text] [Related]
56. A silicon strip detector array for energy verification and quality assurance in heavy ion therapy. Debrot E, Newall M, Guatelli S, Petasecca M, Matsufuji N, Rosenfeld AB. Med Phys; 2018 Feb 23; 45(2):953-962. PubMed ID: 29265558 [Abstract] [Full Text] [Related]
57. Design of a fast multileaf collimator for radiobiological optimized IMRT with scanned beams of photons, electrons, and light ions. Svensson R, Larsson S, Gudowska I, Holmberg R, Brahme A. Med Phys; 2007 Mar 23; 34(3):877-88. PubMed ID: 17441233 [Abstract] [Full Text] [Related]
58. Independent dose verification system with Monte Carlo simulations using TOPAS for passive scattering proton therapy at the National Cancer Center in Korea. Shin WG, Testa M, Kim HS, Jeong JH, Lee SB, Kim YJ, Min CH. Phys Med Biol; 2017 Sep 12; 62(19):7598-7616. PubMed ID: 28809759 [Abstract] [Full Text] [Related]
59. External beam patient dose verification based on the integral quality monitor (IQM®) output signals. Mahuvava C, Du Plessis FCP. Biomed Phys Eng Express; 2020 Mar 25; 6(3):035014. PubMed ID: 33438659 [Abstract] [Full Text] [Related]
60. Initial development of goCMC: a GPU-oriented fast cross-platform Monte Carlo engine for carbon ion therapy. Qin N, Pinto M, Tian Z, Dedes G, Pompos A, Jiang SB, Parodi K, Jia X. Phys Med Biol; 2017 May 07; 62(9):3682-3699. PubMed ID: 28140352 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]