These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
119 related items for PubMed ID: 38712993
1. Skyrmion lattice formation and destruction mechanisms probed with TR-SANS. Liyanage WLNC, Tang N, Dally RL, Quigley LJ, Buchanan CC, Shu GJ, Butch NP, Krycka K, Bleuel M, Borchers JA, Debeer-Schmitt L, Gilbert DA. Nanoscale; 2024 Jun 06; 16(22):10715-10726. PubMed ID: 38712993 [Abstract] [Full Text] [Related]
3. Deriving the skyrmion Hall angle from skyrmion lattice dynamics. Brearton R, Turnbull LA, Verezhak JAT, Balakrishnan G, Hatton PD, van der Laan G, Hesjedal T. Nat Commun; 2021 May 11; 12(1):2723. PubMed ID: 33976177 [Abstract] [Full Text] [Related]
4. Real-space anisotropic dielectric response in a multiferroic skyrmion lattice. Chu P, Xie YL, Zhang Y, Chen JP, Chen DP, Yan ZB, Liu JM. Sci Rep; 2015 Feb 09; 5():8318. PubMed ID: 25661786 [Abstract] [Full Text] [Related]
5. Characterization of a Disordered above Room Temperature Skyrmion Material Co8Zn8Mn4. Henderson ME, Beare J, Sharma S, Bleuel M, Clancy P, Cory DG, Huber MG, Marjerrison CA, Pula M, Sarenac D, Smith EM, Zhernenkov K, Luke GM, Pushin DA. Materials (Basel); 2021 Aug 19; 14(16):. PubMed ID: 34443211 [Abstract] [Full Text] [Related]
6. Skyrmion lattice structural transition in MnSi. Nakajima T, Oike H, Kikkawa A, Gilbert EP, Booth N, Kakurai K, Taguchi Y, Tokura Y, Kagawa F, Arima TH. Sci Adv; 2017 Jun 19; 3(6):e1602562. PubMed ID: 28630906 [Abstract] [Full Text] [Related]
7. Magnetic Direct-Write Skyrmion Nanolithography. Ognev AV, Kolesnikov AG, Kim YJ, Cha IH, Sadovnikov AV, Nikitov SA, Soldatov IV, Talapatra A, Mohanty J, Mruczkiewicz M, Ge Y, Kerber N, Dittrich F, Virnau P, Kläui M, Kim YK, Samardak AS. ACS Nano; 2020 Nov 24; 14(11):14960-14970. PubMed ID: 33152236 [Abstract] [Full Text] [Related]
8. Multidomain Skyrmion Lattice State in Cu2OSeO3. Zhang SL, Bauer A, Burn DM, Milde P, Neuber E, Eng LM, Berger H, Pfleiderer C, van der Laan G, Hesjedal T. Nano Lett; 2016 May 11; 16(5):3285-91. PubMed ID: 27070961 [Abstract] [Full Text] [Related]
9. Particle-size dependent structural transformation of skyrmion lattice. Takagi R, Yamasaki Y, Yokouchi T, Ukleev V, Yokoyama Y, Nakao H, Arima T, Tokura Y, Seki S. Nat Commun; 2020 Nov 11; 11(1):5685. PubMed ID: 33177528 [Abstract] [Full Text] [Related]
10. Observation by SANS and PNR of pure Néel-type domain wall profiles and skyrmion suppression below room temperature in magnetic [Pt/CoFeB/Ru]10 multilayers. Ukleev V, Ajejas F, Devishvili A, Vorobiev A, Steinke NJ, Cubitt R, Luo C, Abrudan RM, Radu F, Cros V, Reyren N, White JS. Sci Technol Adv Mater; 2024 Nov 11; 25(1):2315015. PubMed ID: 38455384 [Abstract] [Full Text] [Related]
11. Real-space observation of a two-dimensional skyrmion crystal. Yu XZ, Onose Y, Kanazawa N, Park JH, Han JH, Matsui Y, Nagaosa N, Tokura Y. Nature; 2010 Jun 17; 465(7300):901-4. PubMed ID: 20559382 [Abstract] [Full Text] [Related]
12. Electric-field-induced Skyrmion distortion and giant lattice rotation in the magnetoelectric insulator Cu2OSeO3. White JS, Prša K, Huang P, Omrani AA, Zivković I, Bartkowiak M, Berger H, Magrez A, Gavilano JL, Nagy G, Zang J, Rønnow HM. Phys Rev Lett; 2014 Sep 05; 113(10):107203. PubMed ID: 25238382 [Abstract] [Full Text] [Related]
13. Skyrmion lattice in a chiral magnet. Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Böni P. Science; 2009 Feb 13; 323(5916):915-9. PubMed ID: 19213914 [Abstract] [Full Text] [Related]
14. Rolling Motion of Rigid Skyrmion Crystallites Induced by Chiral Lattice Torque. Jin H, Chen J, van der Laan G, Hesjedal T, Liu Y, Zhang S. Nano Lett; 2024 Oct 02; 24(39):12226-12232. PubMed ID: 39297736 [Abstract] [Full Text] [Related]
15. Response of the Skyrmion Lattice in MnSi to Cubic Magnetocrystalline Anisotropies. Adams T, Garst M, Bauer A, Georgii R, Pfleiderer C. Phys Rev Lett; 2018 Nov 02; 121(18):187205. PubMed ID: 30444411 [Abstract] [Full Text] [Related]
16. Hysteretic Responses of Skyrmion Lattices to Electric Fields in Magnetoelectric Cu2OSeO3. Han MG, Camino F, Vorobyev PA, Garlow J, Rov R, Söhnel T, Seidel J, Mostovoy M, Tretiakov OA, Zhu Y. Nano Lett; 2023 Aug 09; 23(15):7143-7149. PubMed ID: 37523664 [Abstract] [Full Text] [Related]
17. Topological Hall effect in the A phase of MnSi. Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz PG, Böni P. Phys Rev Lett; 2009 May 08; 102(18):186602. PubMed ID: 19518895 [Abstract] [Full Text] [Related]
18. Filming the formation and fluctuation of skyrmion domains by cryo-Lorentz transmission electron microscopy. Rajeswari J, Huang P, Mancini GF, Murooka Y, Latychevskaia T, McGrouther D, Cantoni M, Baldini E, White JS, Magrez A, Giamarchi T, Rønnow HM, Carbone F. Proc Natl Acad Sci U S A; 2015 Nov 17; 112(46):14212-7. PubMed ID: 26578765 [Abstract] [Full Text] [Related]
19. Long-wavelength helimagnetic order and skyrmion lattice phase in Cu2OSeO3. Adams T, Chacon A, Wagner M, Bauer A, Brandl G, Pedersen B, Berger H, Lemmens P, Pfleiderer C. Phys Rev Lett; 2012 Jun 08; 108(23):237204. PubMed ID: 23003986 [Abstract] [Full Text] [Related]
20. Nanometric square skyrmion lattice in a centrosymmetric tetragonal magnet. Khanh ND, Nakajima T, Yu X, Gao S, Shibata K, Hirschberger M, Yamasaki Y, Sagayama H, Nakao H, Peng L, Nakajima K, Takagi R, Arima TH, Tokura Y, Seki S. Nat Nanotechnol; 2020 Jun 08; 15(6):444-449. PubMed ID: 32424341 [Abstract] [Full Text] [Related] Page: [Next] [New Search]