These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


103 related items for PubMed ID: 3871402

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Comparison of NaCl-induced response across the tongue epithelium to that across other epithelia in the frog.
    Soeda H, Sakudo F.
    Fukuoka Shika Daigaku Gakkai Zasshi; 1990; 17(4):333-43. PubMed ID: 2135053
    [Abstract] [Full Text] [Related]

  • 3. Characteristics of the water response across the dorsal epithelium of frog tongue.
    Soeda H, Sakudo F.
    Comp Biochem Physiol A Comp Physiol; 1988; 89(4):683-91. PubMed ID: 2899487
    [Abstract] [Full Text] [Related]

  • 4. NaCl and water responses across the frog tongue epithelium in vitro.
    Soeda H, Sakudo F.
    Fukuoka Shika Daigaku Gakkai Zasshi; 1990; 17(3):251-9. PubMed ID: 2135048
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Structure and physiological properties of the taste organs on the ventral side of frog tongue (Rana catesbeiana).
    Honda E, Toyoshima K, Hirakawa T, Nakamura S, Nakahara S.
    Chem Senses; 1994 Jun; 19(3):231-8. PubMed ID: 8055273
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Electrical properties of salt induced response across the tongue epithelium in frogs.
    Soeda H, Sakudo F.
    Fukuoka Shika Daigaku Gakkai Zasshi; 1989 Jun; 16(4):503-9. PubMed ID: 2486707
    [Abstract] [Full Text] [Related]

  • 11. Non-selective cation channel in bullfrog taste cell membrane.
    Fujiyama R, Miyamoto T, Sato T.
    Neuroreport; 1993 Oct 25; 5(1):11-3. PubMed ID: 7506587
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Non-synaptic transformation of gustatory receptor potential by stimulation of the parasympathetic fiber of the frog glossopharyngeal nerve.
    Sato T, Miyamoto T, Okada Y, Fujiyama R.
    Chem Senses; 2001 Jan 25; 26(1):79-84. PubMed ID: 11124218
    [Abstract] [Full Text] [Related]

  • 16. Membrane excitability of wing and rod cells in frog taste discs following denervation.
    Okuda-Akabane K, Fukami H, Narita K, Kitada Y.
    Brain Res; 2006 Aug 04; 1103(1):145-9. PubMed ID: 16787642
    [Abstract] [Full Text] [Related]

  • 17. Receptive fields and gustatory responsiveness of frog glossopharyngeal nerve. A single fiber analysis.
    Hanamori T, Hirota K, Ishiko N.
    J Gen Physiol; 1990 Jun 04; 95(6):1159-82. PubMed ID: 2374001
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Epithelial responses to glycinamide and glycylglycinamide in the frog (Rana catesbeiana) tongue.
    Soeda H, Sakudo F.
    Comp Biochem Physiol A Comp Physiol; 1991 Jun 04; 100(2):315-21. PubMed ID: 1685953
    [Abstract] [Full Text] [Related]

  • 20. The origin of slow potentials on the tongue surface induced by frog glossopharyngeal efferent fiber stimulation.
    Sato T, Toda K, Miyamoto T, Okada Y, Fujiyama R.
    Chem Senses; 2000 Oct 04; 25(5):583-9. PubMed ID: 11015330
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.