These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
114 related items for PubMed ID: 38714618
1. Comparison of mercury (Hg) bioaccumulation with mono- and mixed Lemna minor and Spirodela polyrhiza cultures. Spencer BS, Baddar ZE, Xu X. Environ Sci Pollut Res Int; 2024 May; 31(24):35055-35068. PubMed ID: 38714618 [Abstract] [Full Text] [Related]
2. Cadmium removal by Lemna minor and Spirodela polyrhiza. Chaudhuri D, Majumder A, Misra AK, Bandyopadhyay K. Int J Phytoremediation; 2014 May; 16(7-12):1119-32. PubMed ID: 24933906 [Abstract] [Full Text] [Related]
3. Assessment of mercury bioavailability to benthic macroinvertebrates using diffusive gradients in thin films (DGT). Amirbahman A, Massey DI, Lotufo G, Steenhaut N, Brown LE, Biedenbach JM, Magar VS. Environ Sci Process Impacts; 2013 Oct; 15(11):2104-14. PubMed ID: 24084872 [Abstract] [Full Text] [Related]
4. Utility of Diffusive Gradient in Thin-Film Passive Samplers for Predicting Mercury Methylation Potential and Bioaccumulation in Freshwater Wetlands. Neal-Walthall N, Ndu U, Rivera NA, Elias DA, Hsu-Kim H. Environ Sci Technol; 2022 Feb 01; 56(3):1743-1752. PubMed ID: 35044747 [Abstract] [Full Text] [Related]
5. Tolerance and phytoremediation capacity of atrazine and S-metolachlor by two duckweeds. Cruz FVDS, Brant HSC, Ohlund L, Sleno L, Juneau P. Environ Sci Pollut Res Int; 2024 Oct 01; 31(49):59382-59397. PubMed ID: 39349896 [Abstract] [Full Text] [Related]
6. Effects of nickel on the chloroplasts of the duckweeds Spirodela polyrhiza and Lemna minor and their possible use in biomonitoring and phytoremediation. Appenroth KJ, Krech K, Keresztes A, Fischer W, Koloczek H. Chemosphere; 2010 Jan 01; 78(3):216-23. PubMed ID: 19945735 [Abstract] [Full Text] [Related]
7. The biological responses and metal phytoaccumulation of duckweed Spirodela polyrhiza to manganese and chromium. Liu Y, Sanguanphun T, Yuan W, Cheng JJ, Meetam M. Environ Sci Pollut Res Int; 2017 Aug 01; 24(23):19104-19113. PubMed ID: 28660513 [Abstract] [Full Text] [Related]
8. Herbicide effects of metazachlor on duckweed (Lemna minor and Spirodela polyrhiza) in test systems with different trophic status and complexity. Müller R, Berghahn R, Hilt S. J Environ Sci Health B; 2010 Feb 01; 45(2):95-101. PubMed ID: 20390937 [Abstract] [Full Text] [Related]
9. Light intensity drives different growth strategies in two duckweed species: Lemna minor L. and Spirodela polyrhiza (L.) Schleiden. Strzałek M, Kufel L. PeerJ; 2021 Feb 01; 9():e12698. PubMed ID: 35036168 [Abstract] [Full Text] [Related]
10. Mercury speciation, bioavailability, and biomagnification in contaminated streams on the Savannah River Site (SC, USA). Xu X, Bryan AL, Mills GL, Korotasz AM. Sci Total Environ; 2019 Jun 10; 668():261-270. PubMed ID: 30852203 [Abstract] [Full Text] [Related]
11. Potential of four aquatic plant species to remove 60Co from contaminated water under changing experimental conditions. Vanhoudt N, Van Ginneken P, Nauts R, Van Hees M. Environ Sci Pollut Res Int; 2018 Sep 10; 25(27):27187-27195. PubMed ID: 30027375 [Abstract] [Full Text] [Related]
12. Mercury induced oxidative stress, DNA damage, and activation of antioxidative system and Hsp70 induction in duckweed (Lemna minor). Zhang T, Lu Q, Su C, Yang Y, Hu D, Xu Q. Ecotoxicol Environ Saf; 2017 Sep 10; 143():46-56. PubMed ID: 28500894 [Abstract] [Full Text] [Related]
14. Effects of pH, initial Pb2+ concentration, and polyculture on lead remediation by three duckweed species. Tang J, Chen C, Chen L, Daroch M, Cui Y. Environ Sci Pollut Res Int; 2017 Oct 10; 24(30):23864-23871. PubMed ID: 28868570 [Abstract] [Full Text] [Related]
15. Arsenic uptake, accumulation and phytofiltration by duckweed (Spirodela polyrhiza L.). Zhang X, Hu Y, Liu Y, Chen B. J Environ Sci (China); 2011 Oct 10; 23(4):601-6. PubMed ID: 21793402 [Abstract] [Full Text] [Related]
16. Limitations of Applying Diffusive Gradients in Thin Films to Predict Bioavailability of Metal Mixtures in Aquatic Systems with Unstable Water Chemistries. Xu X, Peck E, Fletcher DE, Korotasz A, Perry J. Environ Toxicol Chem; 2020 Dec 10; 39(12):2485-2495. PubMed ID: 32845529 [Abstract] [Full Text] [Related]
17. Do biofilms affect the measurement of mercury by the DGT technique? Microcosm and field tests to prevent biofilm growth. Díez S, Giaggio R. Chemosphere; 2018 Nov 10; 210():692-698. PubMed ID: 30031999 [Abstract] [Full Text] [Related]
19. Sulfamethoxazole removal and fuel-feedstock biomass production from wastewater in a phyto-Fenton process using duckweed culture. Toyama T, Kobayashi M, Rubiy Atno, Morikawa M, Mori K. Chemosphere; 2024 Aug 10; 361():142592. PubMed ID: 38866331 [Abstract] [Full Text] [Related]
20. Growth and Lead Accumulation Capacity of Lemna minor and Spirodela polyrhiza (Lemnaceae): Interactions with Nutrient Enrichment. Leblebici Z, Aksoy A. Water Air Soil Pollut; 2011 Jan 10; 214(1-4):175-184. PubMed ID: 21258435 [Abstract] [Full Text] [Related] Page: [Next] [New Search]