These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
132 related items for PubMed ID: 38718533
1. Sirt5 improves cardiomyocytes fatty acid metabolism and ameliorates cardiac lipotoxicity in diabetic cardiomyopathy via CPT2 de-succinylation. Wu M, Tan J, Cao Z, Cai Y, Huang Z, Chen Z, He W, Liu X, Jiang Y, Gao Q, Deng B, Wang J, Yuan W, Zhang H, Chen Y. Redox Biol; 2024 Jul; 73():103184. PubMed ID: 38718533 [Abstract] [Full Text] [Related]
2. Impaired fatty acid oxidation as a cause for lipotoxicity in cardiomyocytes. Haffar T, Bérubé-Simard F, Bousette N. Biochem Biophys Res Commun; 2024 Jul; 468(1-2):73-8. PubMed ID: 26546819 [Abstract] [Full Text] [Related]
4. Octanoate is differentially metabolized in liver and muscle and fails to rescue cardiomyopathy in CPT2 deficiency. Pereyra AS, Harris KL, Soepriatna AH, Waterbury QA, Bharathi SS, Zhang Y, Fisher-Wellman KH, Goergen CJ, Goetzman ES, Ellis JM. J Lipid Res; 2021 Jul; 62():100069. PubMed ID: 33757734 [Abstract] [Full Text] [Related]
5. Fibroblast growth factor-21 prevents diabetic cardiomyopathy via AMPK-mediated antioxidation and lipid-lowering effects in the heart. Yang H, Feng A, Lin S, Yu L, Lin X, Yan X, Lu X, Zhang C. Cell Death Dis; 2018 Feb 14; 9(2):227. PubMed ID: 29445083 [Abstract] [Full Text] [Related]
6. SIRT5-related lysine demalonylation of GSTP1 contributes to cardiomyocyte pyroptosis suppression in diabetic cardiomyopathy. Wei C, Shi M, Dong S, Li Z, Zhao B, Liu D, Li G, Cen J, Yu L, Liang X, Shi L. Int J Biol Sci; 2024 Feb 14; 20(2):585-605. PubMed ID: 38169591 [Abstract] [Full Text] [Related]
7. Mst1 knockdown alleviates cardiac lipotoxicity and inhibits the development of diabetic cardiomyopathy in db/db mice. Xiong Z, Li Y, Zhao Z, Zhang Y, Man W, Lin J, Dong Y, Liu L, Wang B, Wang H, Guo B, Li C, Li F, Wang H, Sun D. Biochim Biophys Acta Mol Basis Dis; 2020 Aug 01; 1866(8):165806. PubMed ID: 32320827 [Abstract] [Full Text] [Related]
8. Loss of mitochondria long-chain fatty acid oxidation impairs skeletal muscle contractility by disrupting myofibril structure and calcium homeostasis. Pereyra AS, Fernandez RF, Amorese A, Castro JN, Lin CT, Spangenburg EE, Ellis JM. Mol Metab; 2024 Nov 01; 89():102015. PubMed ID: 39182841 [Abstract] [Full Text] [Related]
9. Nuclear miR-320 Mediates Diabetes-Induced Cardiac Dysfunction by Activating Transcription of Fatty Acid Metabolic Genes to Cause Lipotoxicity in the Heart. Li H, Fan J, Zhao Y, Zhang X, Dai B, Zhan J, Yin Z, Nie X, Fu XD, Chen C, Wang DW. Circ Res; 2019 Dec 06; 125(12):1106-1120. PubMed ID: 31638474 [Abstract] [Full Text] [Related]
10. Mitochondrial carnitine palmitoyltransferase 2 is involved in Nε-(carboxymethyl)-lysine-mediated diabetic nephropathy. Lee J, Hyon JY, Min JY, Huh YH, Kim HJ, Lee H, Yun SH, Choi CW, Jeong Ha S, Park J, Chung YH, Jeong HG, Ha SK, Jung SK, Kim Y, Han EH. Pharmacol Res; 2020 Feb 06; 152():104600. PubMed ID: 31838081 [Abstract] [Full Text] [Related]
11. Alterations in fatty acid metabolism and sirtuin signaling characterize early type-2 diabetic hearts of fructose-fed rats. Lou PH, Lucchinetti E, Scott KY, Huang Y, Gandhi M, Hersberger M, Clanachan AS, Lemieux H, Zaugg M. Physiol Rep; 2017 Aug 06; 5(16):. PubMed ID: 28830979 [Abstract] [Full Text] [Related]
13. Salacia oblonga root improves cardiac lipid metabolism in Zucker diabetic fatty rats: modulation of cardiac PPAR-alpha-mediated transcription of fatty acid metabolic genes. Huang TH, Yang Q, Harada M, Uberai J, Radford J, Li GQ, Yamahara J, Roufogalis BD, Li Y. Toxicol Appl Pharmacol; 2006 Jan 01; 210(1-2):78-85. PubMed ID: 16129467 [Abstract] [Full Text] [Related]
14. Mitochondria fission accentuates oxidative stress in hyperglycemia-induced H9c2 cardiomyoblasts in vitro by regulating fatty acid oxidation. Song X, Fan C, Wei C, Yu W, Tang J, Ma F, Chen Y, Wu B. Cell Biol Int; 2024 Sep 01; 48(9):1378-1391. PubMed ID: 38922770 [Abstract] [Full Text] [Related]
15. High Fat Diet Upregulates Fatty Acid Oxidation and Ketogenesis via Intervention of PPAR-γ. Sikder K, Shukla SK, Patel N, Singh H, Rafiq K. Cell Physiol Biochem; 2018 Sep 01; 48(3):1317-1331. PubMed ID: 30048968 [Abstract] [Full Text] [Related]
16. Characterization of the cardiac succinylome and its role in ischemia-reperfusion injury. Boylston JA, Sun J, Chen Y, Gucek M, Sack MN, Murphy E. J Mol Cell Cardiol; 2015 Nov 01; 88():73-81. PubMed ID: 26388266 [Abstract] [Full Text] [Related]
17. Suppression of RCAN1 alleviated lipid accumulation and mitochondrial fission in diabetic cardiomyopathy. Shu S, Cui H, Liu Z, Zhang H, Yang Y, Chen X, Zeng Z, Du L, Fu M, Yang Z, Wang P, Wang C, Gao H, Yang Q, Lin X, Yang T, Chen Z, Wu S, Wang X, Zhao R, Hu S, Song J. Metabolism; 2024 Sep 01; 158():155977. PubMed ID: 39053690 [Abstract] [Full Text] [Related]
18. Profile of cardiac lipid metabolism in STZ-induced diabetic mice. Li W, Yao M, Wang R, Shi Y, Hou L, Hou Z, Lian K, Zhang N, Wang Y, Li W, Wang W, Jiang L. Lipids Health Dis; 2018 Oct 09; 17(1):231. PubMed ID: 30301464 [Abstract] [Full Text] [Related]
19. Loss of cardiac carnitine palmitoyltransferase 2 results in rapamycin-resistant, acetylation-independent hypertrophy. Pereyra AS, Hasek LY, Harris KL, Berman AG, Damen FW, Goergen CJ, Ellis JM. J Biol Chem; 2017 Nov 10; 292(45):18443-18456. PubMed ID: 28916721 [Abstract] [Full Text] [Related]
20. Carnitine palmitoyltransferase 2: New insights on the substrate specificity and implications for acylcarnitine profiling. Violante S, Ijlst L, van Lenthe H, de Almeida IT, Wanders RJ, Ventura FV. Biochim Biophys Acta; 2010 Sep 10; 1802(9):728-32. PubMed ID: 20538056 [Abstract] [Full Text] [Related] Page: [Next] [New Search]