These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
130 related items for PubMed ID: 38723565
1. Quantitative detection of microcystin-LR in Bellamya aeruginosa by thin-layer chromatography coupled with surface-enhanced Raman spectroscopy based on in-situ ZIF-67/Ag NPs/Au NWs composite substrate. Jiang J, Liu M, Xu D, Jiang T, Zhang J. Food Chem; 2024 Sep 15; 452():139481. PubMed ID: 38723565 [Abstract] [Full Text] [Related]
2. Multiplexed SERS Detection of Microcystins with Aptamer-Driven Core-Satellite Assemblies. Luo X, Zhao X, Wallace GQ, Brunet MH, Wilkinson KJ, Wu P, Cai C, Bazuin CG, Masson JF. ACS Appl Mater Interfaces; 2021 Feb 10; 13(5):6545-6556. PubMed ID: 33522805 [Abstract] [Full Text] [Related]
3. Gap-Tethered Au@AgAu Raman Tags for the Ratiometric Detection of MC-LR. Zhao Y, Zheng F, Ke W, Zhang W, Shi L, Liu H. Anal Chem; 2019 Jun 04; 91(11):7162-7172. PubMed ID: 31066265 [Abstract] [Full Text] [Related]
4. Gold nanomaterials for the selective capturing and SERS diagnosis of toxins in aqueous and biological fluids. Hassanain WA, Izake EL, Schmidt MS, Ayoko GA. Biosens Bioelectron; 2017 May 15; 91():664-672. PubMed ID: 28110251 [Abstract] [Full Text] [Related]
5. ATP-Responsive Strand Displacement Coupling with DNA Origami/AuNPs Strategy for the Determination of Microcystin-LR Using Surface-Enhanced Raman Spectroscopy. Huo B, Xia L, Gao Z, Li G, Hu Y. Anal Chem; 2022 Aug 30; 94(34):11889-11897. PubMed ID: 35973129 [Abstract] [Full Text] [Related]
6. Label-free identification of trace microcystin-LR with surface-enhanced Raman scattering spectra. He S, Xie W, Fang S, Zhou D, Djebbi K, Zhang Z, Du J, Du C, Wang D. Talanta; 2019 Apr 01; 195():401-406. PubMed ID: 30625561 [Abstract] [Full Text] [Related]
7. A novel SERS-based aptasensor for ultrasensitive sensing of microcystin-LR. He D, Wu Z, Cui B, Jin Z. Food Chem; 2019 Apr 25; 278():197-202. PubMed ID: 30583362 [Abstract] [Full Text] [Related]
8. Qualitative and quantitative detection of microcystin-LR based on SERS-FET dual-mode biosensor. Tian M, Wang J, Li C, Wang Z, Liu G, Lv E, Zhao X, Li Z, Cao D, Liu H, Zhang C, Xu S, Man B. Biosens Bioelectron; 2022 Sep 15; 212():114434. PubMed ID: 35671700 [Abstract] [Full Text] [Related]
9. A novel near-infrared light-responsive photoelectrochemical platform for detecting microcystin-LR in fish based on Ag2S cubes and plasmonic Au nanoparticles. Zheng C, Yin M, Su B, Peng A, Guo Z, Chen X, Chen X. Talanta; 2021 Jan 01; 221():121447. PubMed ID: 33076071 [Abstract] [Full Text] [Related]
10. Recognition and quantitative analysis for six phthalate esters (PAEs) through functionalized ZIF-67@Ag nanowires as surface-enhanced Raman scattering substrate. Xu H, Zhu J, Wu X, Cheng Y, Wang D, Cai D. Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan 05; 284():121735. PubMed ID: 36049297 [Abstract] [Full Text] [Related]
11. Functionalized Au@Ag-Au nanoparticles as an optical and SERS dual probe for lateral flow sensing. Bai T, Wang M, Cao M, Zhang J, Zhang K, Zhou P, Liu Z, Liu Y, Guo Z, Lu X. Anal Bioanal Chem; 2018 Mar 05; 410(9):2291-2303. PubMed ID: 29445833 [Abstract] [Full Text] [Related]
12. Ultrasensitive Detection of Hepatotoxic Microcystin Production from Cyanobacteria Using Surface-Enhanced Raman Scattering Immunosensor. Li M, Paidi SK, Sakowski E, Preheim S, Barman I. ACS Sens; 2019 May 24; 4(5):1203-1210. PubMed ID: 30990314 [Abstract] [Full Text] [Related]
13. Detection of sildenafil adulterated in herbal products using thin layer chromatography combined with surface enhanced Raman spectroscopy: "Double coffee-ring effect" based enhancement. Minh DTC, Thi LA, Huyen NTT, Van Vu L, Anh NTK, Ha PTT. J Pharm Biomed Anal; 2019 Sep 10; 174():340-347. PubMed ID: 31202876 [Abstract] [Full Text] [Related]
14. Self-assembly flexible SERS imprinted membrane based on Ag nanocubes for selective detection of microcystin-LR. Wang Z, Zhang L, Sun L, Bao S, Liu D, Li H, Liu Y. Mikrochim Acta; 2023 Dec 13; 191(1):19. PubMed ID: 38087094 [Abstract] [Full Text] [Related]
15. Tailored FTO/Ag/ZIF-8 structure as SERS substrate for ultrasensitive detection. Xue X, Chen L, Zhao C, Qiao Y, Wang J, Shi J, Lin Y, Chang L. Spectrochim Acta A Mol Biomol Spectrosc; 2022 Dec 05; 282():121693. PubMed ID: 35917613 [Abstract] [Full Text] [Related]
16. Rapid detection of multiple organophosphorus pesticides (triazophos and parathion-methyl) residues in peach by SERS based on core-shell bimetallic Au@Ag NPs. Yaseen T, Pu H, Sun DW. Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2019 May 05; 36(5):762-778. PubMed ID: 30943113 [Abstract] [Full Text] [Related]
17. Au@Ag nanodome-cones array substrate for efficient residue analysis of food samples by surface-enhanced Raman scattering. Lai H, Li G, Zhang Z. Anal Chim Acta; 2023 Jun 08; 1259():341159. PubMed ID: 37100472 [Abstract] [Full Text] [Related]
18. Plasmonic Au-Ag Janus Nanoparticle Engineered Ratiometric Surface-Enhanced Raman Scattering Aptasensor for Ochratoxin A Detection. Zheng F, Ke W, Shi L, Liu H, Zhao Y. Anal Chem; 2019 Sep 17; 91(18):11812-11820. PubMed ID: 31424931 [Abstract] [Full Text] [Related]
19. Facile detection of carbendazim in food using TLC-SERS on diatomite thin layer chromatography. Shen Z, Fan Q, Yu Q, Wang R, Wang H, Kong X. Spectrochim Acta A Mol Biomol Spectrosc; 2021 Feb 15; 247():119037. PubMed ID: 33086143 [Abstract] [Full Text] [Related]
20. Silver overlayer-modified surface-enhanced Raman scattering-active gold substrates for potential applications in trace detection of biochemical species. Ou KL, Hsu TC, Liu YC, Yang KH, Tsai HY. Anal Chim Acta; 2014 Jan 02; 806():188-96. PubMed ID: 24331055 [Abstract] [Full Text] [Related] Page: [Next] [New Search]