These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


140 related items for PubMed ID: 38728785

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Predicting cyanobacterial biovolume from water temperature and conductivity using a Bayesian compound Poisson-Gamma model.
    Haakonsson S, Rodríguez MA, Carballo C, Pérez MDC, Arocena R, Bonilla S.
    Water Res; 2020 Jun 01; 176():115710. PubMed ID: 32251942
    [Abstract] [Full Text] [Related]

  • 6. Acoustic scattering by gas-bearing cyanobacterium Microcystis: Modeling and in situ biomass assessment.
    Chu D, Ostrovsky I, Homma H.
    Sci Total Environ; 2021 Nov 10; 794():148573. PubMed ID: 34225151
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. [Analysis of Influencing Factors of Chlorophyll-a in Lake Taihu Based on Bayesian Network].
    Liu J, He YC, Deng JM, Tang XM.
    Huan Jing Ke Xue; 2023 May 08; 44(5):2592-2600. PubMed ID: 37177933
    [Abstract] [Full Text] [Related]

  • 10. Rapid in situ assessment of high-resolution spatial and temporal distribution of cyanobacterial blooms using fishery echosounder.
    Godlewska M, Balk H, Izydorczyk K, Kaczkowski Z, Mankiewicz-Boczek J, Ye S.
    Sci Total Environ; 2023 Jan 20; 857(Pt 2):159492. PubMed ID: 36257442
    [Abstract] [Full Text] [Related]

  • 11. [Analysis of the Spatiotemporal Distribution of Algal Blooms and Its Driving Factors in Chaohu Lake Based on Multi-source Datasets].
    Jin XL, Deng XL, Dai R, Xu QQ, Wu Y, Fan YX.
    Huan Jing Ke Xue; 2024 May 08; 45(5):2694-2706. PubMed ID: 38629533
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. The Special and General Mechanism of Cyanobacterial Harmful Algal Blooms.
    Cheng W, Hwang S, Guo Q, Qian L, Liu W, Yu Y, Liu L, Tao Y, Cao H.
    Microorganisms; 2023 Apr 10; 11(4):. PubMed ID: 37110410
    [Abstract] [Full Text] [Related]

  • 15. Forecasting freshwater cyanobacterial harmful algal blooms for Sentinel-3 satellite resolved U.S. lakes and reservoirs.
    Schaeffer BA, Reynolds N, Ferriby H, Salls W, Smith D, Johnston JM, Myer M.
    J Environ Manage; 2024 Jan 01; 349():119518. PubMed ID: 37944321
    [Abstract] [Full Text] [Related]

  • 16. Environmental drivers behind the exceptional increase in cyanobacterial blooms in Okavango Delta, Botswana.
    Veerman J, Mishra DR, Kumar A, Karidozo M.
    Harmful Algae; 2024 Aug 01; 137():102677. PubMed ID: 39003028
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Investigating the sub-daily dynamics of cyanobacterial blooms by coupling high-frequency time-series remote sensing with hydro-ecological modelling.
    Li H, Qin C, He W, Sun F, Du P.
    J Environ Manage; 2022 Sep 01; 317():115311. PubMed ID: 35751230
    [Abstract] [Full Text] [Related]

  • 19. Multispectral remote sensing of harmful algal blooms in Lake Champlain, USA.
    Isenstein EM, Trescott A, Park MH.
    Water Environ Res; 2014 Dec 01; 86(12):2271-8. PubMed ID: 25654929
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.