These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


151 related items for PubMed ID: 3873539

  • 1. The chromaffin granule proton pump and calcium-dependent exocytosis in bovine adrenal medullary cells.
    Knight DE, Baker PF.
    J Membr Biol; 1985; 83(1-2):147-56. PubMed ID: 3873539
    [Abstract] [Full Text] [Related]

  • 2. Evidence that the H+ electrochemical gradient across membranes of chromaffin granules is not involved in exocytosis.
    Holz RW, Senter RA, Sharp RR.
    J Biol Chem; 1983 Jun 25; 258(12):7506-13. PubMed ID: 6863252
    [Abstract] [Full Text] [Related]

  • 3. Dissection of stages in exocytosis in the adrenal chromaffin cell with use of trifluoperazine.
    Burgoyne RD, Geisow MJ, Barron J.
    Proc R Soc Lond B Biol Sci; 1982 Aug 23; 216(1202):111-5. PubMed ID: 6137823
    [Abstract] [Full Text] [Related]

  • 4. Role of intracellular proteins in the regulation of calcium action and transmitter release during exocytosis.
    Pollard HB, Pazoles CJ, Creutz CE, Zinder O.
    Monogr Neural Sci; 1980 Aug 23; 7():106-16. PubMed ID: 6112701
    [Abstract] [Full Text] [Related]

  • 5. The chromaffin granule - plasma membrane interaction as a model for exocytosis: quantitative release of the soluble granular content.
    Konings F, De Potter W.
    Biochem Biophys Res Commun; 1982 Jan 15; 104(1):254-8. PubMed ID: 7073671
    [No Abstract] [Full Text] [Related]

  • 6. Biological amine transport in chromaffin ghosts. Coupling to the transmembrane proton and potential gradients.
    Johnson RG, Pfister D, Carty SE, Scarpa A.
    J Biol Chem; 1979 Nov 10; 254(21):10963-72. PubMed ID: 40978
    [Abstract] [Full Text] [Related]

  • 7. Acetylcholine-induced in vitro fusion between cell membrane vesicles and chromaffin granules from the bovine adrenal medulla.
    Lelkes PI, Lavie E, Naquira D, Schneeweiss F, Schneider AS, Rosenheck K.
    FEBS Lett; 1980 Jun 16; 115(1):129-33. PubMed ID: 7389913
    [No Abstract] [Full Text] [Related]

  • 8. Mechanism of calcium action and release of vesicle-bound hormones during exocytosis.
    Pollard HB, Pazoles CJ, Creutz CE.
    Recent Prog Horm Res; 1981 Jun 16; 37():299-332. PubMed ID: 6456530
    [No Abstract] [Full Text] [Related]

  • 9. A role for sialic acid containing substrates in the exocytosis-like in vitro interaction between adrenal medullary plasma membranes and chromaffin granules.
    Konings F, De Potter W.
    Biochem Biophys Res Commun; 1982 Jun 30; 106(4):1191-5. PubMed ID: 6180748
    [No Abstract] [Full Text] [Related]

  • 10. Lysis of chromaffin granules by phospholipase A2-treated plasma membranes. A cell-free model for exocytosis in adrenal medulla.
    Izumi F, Yanagihara N, Wada A, Toyohira Y, Kobayashi H.
    FEBS Lett; 1986 Feb 17; 196(2):349-52. PubMed ID: 3949007
    [Abstract] [Full Text] [Related]

  • 11. Phospholipids as adjuncts for calcium ion stimulated release of chromaffin granule contents: implications for mechanisms of exocytosis.
    Nayar R, Hope MJ, Cullis PR.
    Biochemistry; 1982 Sep 14; 21(19):4583-9. PubMed ID: 7138818
    [Abstract] [Full Text] [Related]

  • 12. Role of Mg-ATP in norepinephrine biosynthesis in intact chromaffin granules.
    Dhariwal KR, Shirvan MH, Levine M.
    J Neurochem; 1994 Jan 14; 62(1):355-60. PubMed ID: 8263536
    [Abstract] [Full Text] [Related]

  • 13. The chromaffin granule: recent studies leading to a functional model for exocytosis.
    Zinder O, Pollard HB.
    Essays Neurochem Neuropharmacol; 1980 Jan 14; 4():125-62. PubMed ID: 6993206
    [No Abstract] [Full Text] [Related]

  • 14. Calcium control of exocytosis and endocytosis in bovine adrenal medullary cells.
    Baker PF, Knight DE.
    Philos Trans R Soc Lond B Biol Sci; 1981 Dec 18; 296(1080):83-103. PubMed ID: 6121350
    [Abstract] [Full Text] [Related]

  • 15. Calcium-dependent in vitro interaction between bovine adrenal medullary cell membranes and chromaffin granules as a model for exocytosis.
    Konings F, De Potter W.
    FEBS Lett; 1981 Apr 06; 126(1):103-6. PubMed ID: 6786919
    [No Abstract] [Full Text] [Related]

  • 16. Stoichiometry of H+-linked dopamine transport in chromaffin granule ghosts.
    Knoth J, Zallakian M, Njus D.
    Biochemistry; 1981 Nov 10; 20(23):6625-9. PubMed ID: 6458332
    [Abstract] [Full Text] [Related]

  • 17. Inhibition of exocytosis by intracellularly applied antibodies against a chromaffin granule-binding protein.
    Schweizer FE, Schäfer T, Tapparelli C, Grob M, Karli UO, Heumann R, Thoenen H, Bookman RJ, Burger MM.
    Nature; 1989 Jun 29; 339(6227):709-12. PubMed ID: 2765027
    [Abstract] [Full Text] [Related]

  • 18. Calcium-dependent exocytosis in bovine adrenal medullary cells with leaky plasma membranes.
    Baker PF, Knight DE.
    Nature; 1978 Dec 07; 276(5688):620-2. PubMed ID: 723944
    [No Abstract] [Full Text] [Related]

  • 19. Evidence that catecholamine transport into chromaffin vesicles is coupled to vesicle membrane potential.
    Holz RW.
    Proc Natl Acad Sci U S A; 1978 Oct 07; 75(10):5190-4. PubMed ID: 33385
    [Abstract] [Full Text] [Related]

  • 20. Both the transmembrane pH gradient and the membrane potential are important in the accumulation of amines by resealed chromaffin-granule 'ghosts'.
    Apps DK, Pryde JG, Phillips JH.
    FEBS Lett; 1980 Mar 10; 111(2):386-90. PubMed ID: 7358179
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.