These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


162 related items for PubMed ID: 38743626

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Constitutive "light" adaptation in rods from G90D rhodopsin: a mechanism for human congenital nightblindness without rod cell loss.
    Sieving PA, Fowler ML, Bush RA, Machida S, Calvert PD, Green DG, Makino CL, McHenry CL.
    J Neurosci; 2001 Aug 01; 21(15):5449-60. PubMed ID: 11466416
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Characterization of the mutant visual pigment responsible for congenital night blindness: a biochemical and Fourier-transform infrared spectroscopy study.
    Zvyaga TA, Fahmy K, Siebert F, Sakmar TP.
    Biochemistry; 1996 Jun 11; 35(23):7536-45. PubMed ID: 8652533
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Retinal degeneration in mice expressing the constitutively active G90D rhodopsin mutant.
    Colozo AT, Vasudevan S, Park PS.
    Hum Mol Genet; 2020 Apr 15; 29(6):881-891. PubMed ID: 31960909
    [Abstract] [Full Text] [Related]

  • 8. Insights into congenital stationary night blindness based on the structure of G90D rhodopsin.
    Singhal A, Ostermaier MK, Vishnivetskiy SA, Panneels V, Homan KT, Tesmer JJ, Veprintsev D, Deupi X, Gurevich VV, Schertler GF, Standfuss J.
    EMBO Rep; 2013 Jun 15; 14(6):520-6. PubMed ID: 23579341
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Structural aspects of rod opsin and their implication in genetic diseases.
    Fanelli F, Felline A, Marigo V.
    Pflugers Arch; 2021 Sep 15; 473(9):1339-1359. PubMed ID: 33728518
    [Abstract] [Full Text] [Related]

  • 12. A truncated form of rod photoreceptor PDE6 β-subunit causes autosomal dominant congenital stationary night blindness by interfering with the inhibitory activity of the γ-subunit.
    Manes G, Cheguru P, Majumder A, Bocquet B, Sénéchal A, Artemyev NO, Hamel CP, Brabet P.
    PLoS One; 2014 Sep 15; 9(4):e95768. PubMed ID: 24760071
    [Abstract] [Full Text] [Related]

  • 13. Molecular mechanisms of disease for mutations at Gly-90 in rhodopsin.
    Toledo D, Ramon E, Aguilà M, Cordomí A, Pérez JJ, Mendes HF, Cheetham ME, Garriga P.
    J Biol Chem; 2011 Nov 18; 286(46):39993-40001. PubMed ID: 21940625
    [Abstract] [Full Text] [Related]

  • 14. Differential pathogenetic mechanisms of mutations in helix 2 and helix 6 of rhodopsin.
    Bighinati A, D'Alessandro S, Felline A, Zeitz C, Bocquet B, Casarini L, Kalatzis V, Meunier I, Fanelli F, Manes G, Marigo V.
    Int J Biol Macromol; 2024 Nov 18; 279(Pt 2):135089. PubMed ID: 39197629
    [Abstract] [Full Text] [Related]

  • 15. A new mouse model for stationary night blindness with mutant Slc24a1 explains the pathophysiology of the associated human disease.
    Vinberg F, Wang T, Molday RS, Chen J, Kefalov VJ.
    Hum Mol Genet; 2015 Oct 15; 24(20):5915-29. PubMed ID: 26246500
    [Abstract] [Full Text] [Related]

  • 16. Dark noise and retinal degeneration from D190N-rhodopsin.
    Silverman D, Chai Z, Yue WWS, Ramisetty SK, Bekshe Lokappa S, Sakai K, Frederiksen R, Bina P, Tsang SH, Yamashita T, Chen J, Yau KW.
    Proc Natl Acad Sci U S A; 2020 Sep 15; 117(37):23033-23043. PubMed ID: 32873651
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.