These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


161 related items for PubMed ID: 3875101

  • 1. Catabolic pathways of purine ribonucleotides and deoxyribonucleotides in lymphocytes.
    Cohen A, Barankiewicz J.
    Proc Soc Exp Biol Med; 1985 Sep; 179(4):437-41. PubMed ID: 3875101
    [Abstract] [Full Text] [Related]

  • 2. Evidence for distinct catabolic pathways of adenine ribonucleotides and deoxyribonucleotides in human T lymphoblastoid cells.
    Barankiewicz J, Cohen A.
    J Biol Chem; 1984 Dec 25; 259(24):15178-81. PubMed ID: 6334686
    [Abstract] [Full Text] [Related]

  • 3. Profiles of purine biosynthesis, salvage and degradation in disks of potato (Solanum tuberosum L.) tubers.
    Katahira R, Ashihara H.
    Planta; 2006 Dec 25; 225(1):115-26. PubMed ID: 16845529
    [Abstract] [Full Text] [Related]

  • 4. Evidence for distinct catabolic pathways for deoxy-GTP and GTP in purine-nucleoside phosphorylase-deficient mouse T lymphoblasts.
    Barankiewicz J, Cohen A.
    J Biol Chem; 1985 Apr 25; 260(8):4565-7. PubMed ID: 2985556
    [Abstract] [Full Text] [Related]

  • 5. Mechanism of deoxyadenosine-induced catabolism of adenine ribonucleotides in adenosine deaminase-inhibited human T lymphoblastoid cells.
    Bagnara AS, Hershfield MS.
    Proc Natl Acad Sci U S A; 1982 Apr 25; 79(8):2673-7. PubMed ID: 6283540
    [Abstract] [Full Text] [Related]

  • 6. Regulation of purine metabolism in lymphocytes.
    Henderson JF, Smith CM, Zombor G.
    Proc Soc Exp Biol Med; 1985 Sep 25; 179(4):419-26. PubMed ID: 3875099
    [Abstract] [Full Text] [Related]

  • 7. Human B lymphocytes and thymocytes but not peripheral blood mononuclear cells accumulate high dATP levels in conditions simulating ADA deficiency.
    Goday A, Simmonds HA, Morris GS, Fairbanks LD.
    Biochem Pharmacol; 1985 Oct 01; 34(19):3561-9. PubMed ID: 3876835
    [Abstract] [Full Text] [Related]

  • 8. Pathways of adenine nucleotide catabolism in primary rat muscle cultures.
    Zoref-Shani E, Shainberg A, Sperling O.
    Biochim Biophys Acta; 1987 Dec 07; 926(3):287-95. PubMed ID: 2825800
    [Abstract] [Full Text] [Related]

  • 9. B cells as well as T cells form deoxynucleotides from either deoxyadenosine or deoxyguanosine.
    Goday A, Simmonds HA, Morris GS, Fairbanks LD.
    Clin Exp Immunol; 1984 Apr 07; 56(1):39-48. PubMed ID: 6424986
    [Abstract] [Full Text] [Related]

  • 10. Liquid-chromatographic study of purine metabolism abnormalities in purine nucleoside phosphorylase deficiency.
    Chantin C, Bonin B, Boulieu R, Bory C.
    Clin Chem; 1996 Feb 07; 42(2):326-8. PubMed ID: 8595732
    [Abstract] [Full Text] [Related]

  • 11. Nucleotide metabolism and enzyme inhibitors in thymic acute lymphoblastic leukaemia.
    Hoffbrand AV, Ma DD, Prentice HG.
    Haematol Blood Transfus; 1983 Feb 07; 28():19-23. PubMed ID: 6407909
    [No Abstract] [Full Text] [Related]

  • 12. Deoxy-ATP accumulation in adenosine deaminase-inhibited human B and T lymphocytes.
    Gruber HE, Cohen AH, Firestein GS, Redelman D, Bluestein HG.
    Adv Exp Med Biol; 1986 Feb 07; 195 Pt A():503-7. PubMed ID: 3487921
    [No Abstract] [Full Text] [Related]

  • 13. Immunodeficiencies associated with errors in purine metabolism.
    Edwards NL.
    Med Clin North Am; 1985 May 07; 69(3):505-18. PubMed ID: 3925260
    [Abstract] [Full Text] [Related]

  • 14. Metabolic basis for disorders of purine nucleotide degradation.
    Fox IH.
    Metabolism; 1981 Jun 07; 30(6):616-34. PubMed ID: 6262603
    [Abstract] [Full Text] [Related]

  • 15. Mechanism of adenosine triphosphate catabolism induced by deoxyadenosine and by nucleoside analogues in adenosine deaminase-inhibited human erythrocytes.
    Bontemps F, Van den Berghe G.
    Cancer Res; 1989 Sep 15; 49(18):4983-9. PubMed ID: 2788493
    [Abstract] [Full Text] [Related]

  • 16. Pathways of adenine nucleotide catabolism in primary rat cardiomyocyte cultures.
    Zoref-Shani E, Kessler-Icekson G, Sperling O.
    J Mol Cell Cardiol; 1988 Jan 15; 20(1):23-33. PubMed ID: 3259263
    [Abstract] [Full Text] [Related]

  • 17. Biochemical consequences of adenosine deaminase inhibition in vivo. Differential effects in acute and chronic T cell leukemia.
    Mitchell BS, Sidi Y, Hershfield M, Koller CA.
    Ann N Y Acad Sci; 1985 Jan 15; 451():129-37. PubMed ID: 3878114
    [No Abstract] [Full Text] [Related]

  • 18. Importance of platelet-free preparations for evaluating lymphocyte nucleotide levels in inherited or acquired immunodeficiency syndromes.
    Goday A, Simmonds HA, Webster DR, Levinsky RJ, Watson AR, Hoffbrand AV.
    Clin Sci (Lond); 1983 Dec 15; 65(6):635-43. PubMed ID: 6414755
    [Abstract] [Full Text] [Related]

  • 19. Purine ribonucleotide biosynthesis, interconversion and catabolism in mouse brain in vitro.
    Wong PC, Henderson JF.
    Biochem J; 1972 Oct 15; 129(5):1085-94. PubMed ID: 4348168
    [Abstract] [Full Text] [Related]

  • 20. Nucleotide catabolism and nucleoside cycles in human thymocytes. Role of orthophosphate.
    Barankiewicz J, Cohen A.
    Biochem J; 1984 Apr 01; 219(1):197-203. PubMed ID: 6609703
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.