These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


173 related items for PubMed ID: 38762549

  • 1. Predicting high-level visual areas in the absence of task fMRI.
    Molloy MF, Saygin ZM, Osher DE.
    Sci Rep; 2024 May 18; 14(1):11376. PubMed ID: 38762549
    [Abstract] [Full Text] [Related]

  • 2. A personalized cortical atlas for functional regions of interest.
    Molloy MF, Osher DE.
    J Neurophysiol; 2023 Nov 01; 130(5):1067-1080. PubMed ID: 37727907
    [Abstract] [Full Text] [Related]

  • 3. A common neural substrate for processing scenes and egomotion-compatible visual motion.
    Sulpizio V, Galati G, Fattori P, Galletti C, Pitzalis S.
    Brain Struct Funct; 2020 Sep 01; 225(7):2091-2110. PubMed ID: 32647918
    [Abstract] [Full Text] [Related]

  • 4. Posterior parietal influences on visual network specialization during development: An fMRI study of functional connectivity in children ages 9 to 12.
    O'Rawe JF, Huang AS, Klein DN, Leung HC.
    Neuropsychologia; 2019 Apr 01; 127():158-170. PubMed ID: 30849407
    [Abstract] [Full Text] [Related]

  • 5. Is the extrastriate body area part of the dorsal visuomotor stream?
    Zimmermann M, Mars RB, de Lange FP, Toni I, Verhagen L.
    Brain Struct Funct; 2018 Jan 01; 223(1):31-46. PubMed ID: 28702735
    [Abstract] [Full Text] [Related]

  • 6. Spontaneously emerging patterns in human visual cortex and their functional connectivity are linked to the patterns evoked by visual stimuli.
    Kim D, Livne T, Metcalf NV, Corbetta M, Shulman GL.
    J Neurophysiol; 2020 Nov 01; 124(5):1343-1363. PubMed ID: 32965156
    [Abstract] [Full Text] [Related]

  • 7. Frontal cortical regions associated with attention connect more strongly to central than peripheral V1.
    Sims SA, Demirayak P, Cedotal S, Visscher KM.
    Neuroimage; 2021 Sep 01; 238():118246. PubMed ID: 34111516
    [Abstract] [Full Text] [Related]

  • 8. Color-Biased Regions of the Ventral Visual Pathway Lie between Face- and Place-Selective Regions in Humans, as in Macaques.
    Lafer-Sousa R, Conway BR, Kanwisher NG.
    J Neurosci; 2016 Feb 03; 36(5):1682-97. PubMed ID: 26843649
    [Abstract] [Full Text] [Related]

  • 9. Partial correlation analysis reveals abnormal retinotopically organized functional connectivity of visual areas in amblyopia.
    Mendola JD, Lam J, Rosenstein M, Lewis LB, Shmuel A.
    Neuroimage Clin; 2018 Feb 03; 18():192-201. PubMed ID: 29868445
    [Abstract] [Full Text] [Related]

  • 10. An algorithmic method for functionally defining regions of interest in the ventral visual pathway.
    Julian JB, Fedorenko E, Webster J, Kanwisher N.
    Neuroimage; 2012 May 01; 60(4):2357-64. PubMed ID: 22398396
    [Abstract] [Full Text] [Related]

  • 11. Connectivity-based constraints on category-specificity in the ventral object processing pathway.
    Chen Q, Garcea FE, Almeida J, Mahon BZ.
    Neuropsychologia; 2017 Oct 01; 105():184-196. PubMed ID: 27876509
    [Abstract] [Full Text] [Related]

  • 12. Distinct and distributed functional connectivity patterns across cortex reflect the domain-specific constraints of object, face, scene, body, and tool category-selective modules in the ventral visual pathway.
    Hutchison RM, Culham JC, Everling S, Flanagan JR, Gallivan JP.
    Neuroimage; 2014 Aug 01; 96():216-36. PubMed ID: 24699018
    [Abstract] [Full Text] [Related]

  • 13. A Probabilistic Functional Atlas of Human Occipito-Temporal Visual Cortex.
    Rosenke M, van Hoof R, van den Hurk J, Grill-Spector K, Goebel R.
    Cereb Cortex; 2021 Jan 01; 31(1):603-619. PubMed ID: 32968767
    [Abstract] [Full Text] [Related]

  • 14. Visuospatial processing in early brain-based visual impairment is associated with differential recruitment of dorsal and ventral visual streams.
    Pamir Z, Manley CE, Bauer CM, Bex PJ, Dilks DD, Merabet LB.
    Cereb Cortex; 2024 May 02; 34(5):. PubMed ID: 38795357
    [Abstract] [Full Text] [Related]

  • 15. Effective Connectivity Reveals an Interconnected Inferotemporal Network for Three-Dimensional Structure Processing.
    Premereur E, Janssen P.
    J Neurosci; 2020 Oct 28; 40(44):8501-8512. PubMed ID: 33028641
    [Abstract] [Full Text] [Related]

  • 16. Category-selective background connectivity in ventral visual cortex.
    Norman-Haignere SV, McCarthy G, Chun MM, Turk-Browne NB.
    Cereb Cortex; 2012 Feb 28; 22(2):391-402. PubMed ID: 21670097
    [Abstract] [Full Text] [Related]

  • 17. Interaction between Scene and Object Processing Revealed by Human fMRI and MEG Decoding.
    Brandman T, Peelen MV.
    J Neurosci; 2017 Aug 09; 37(32):7700-7710. PubMed ID: 28687603
    [Abstract] [Full Text] [Related]

  • 18. The Contribution of Object Shape and Surface Properties to Object Ensemble Representation in Anterior-medial Ventral Visual Cortex.
    Cant JS, Xu Y.
    J Cogn Neurosci; 2017 Feb 09; 29(2):398-412. PubMed ID: 27676614
    [Abstract] [Full Text] [Related]

  • 19. Partial Correlation-Based Retinotopically Organized Resting-State Functional Connectivity Within and Between Areas of the Visual Cortex Reflects More Than Cortical Distance.
    Dawson DA, Lam J, Lewis LB, Carbonell F, Mendola JD, Shmuel A.
    Brain Connect; 2016 Feb 09; 6(1):57-75. PubMed ID: 26415043
    [Abstract] [Full Text] [Related]

  • 20. A Retinotopic Basis for the Division of High-Level Scene Processing between Lateral and Ventral Human Occipitotemporal Cortex.
    Silson EH, Chan AW, Reynolds RC, Kravitz DJ, Baker CI.
    J Neurosci; 2015 Aug 26; 35(34):11921-35. PubMed ID: 26311774
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.