These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
198 related items for PubMed ID: 38771052
1. Pseudomonas aeruginosa two-component system LadS/PA0034 regulates macrophage phagocytosis via fimbrial protein cupA1. Guo X, Yu H, Xiong J, Dai Q, Li Y, Zhang W, Liao X, He X, Zhou H, Zhang K. mBio; 2024 Jun 12; 15(6):e0061624. PubMed ID: 38771052 [Abstract] [Full Text] [Related]
2. The Hybrid Histidine Kinase LadS Forms a Multicomponent Signal Transduction System with the GacS/GacA Two-Component System in Pseudomonas aeruginosa. Chambonnier G, Roux L, Redelberger D, Fadel F, Filloux A, Sivaneson M, de Bentzmann S, Bordi C. PLoS Genet; 2016 May 12; 12(5):e1006032. PubMed ID: 27176226 [Abstract] [Full Text] [Related]
3. Expression of Pseudomonas aeruginosa CupD fimbrial genes is antagonistically controlled by RcsB and the EAL-containing PvrR response regulators. Mikkelsen H, Ball G, Giraud C, Filloux A. PLoS One; 2009 Jun 23; 4(6):e6018. PubMed ID: 19547710 [Abstract] [Full Text] [Related]
4. The Atypical Response Regulator AtvR Is a New Player in Pseudomonas aeruginosa Response to Hypoxia and Virulence. Kaihami GH, Breda LCD, de Almeida JRF, de Oliveira Pereira T, Nicastro GG, Boechat AL, de Almeida SR, Baldini RL. Infect Immun; 2017 Aug 23; 85(8):. PubMed ID: 28533471 [Abstract] [Full Text] [Related]
5. Type IV pilus of Pseudomonas aeruginosa confers resistance to antimicrobial activities of the pulmonary surfactant protein-A. Tan RM, Kuang Z, Hao Y, Lau GW. J Innate Immun; 2014 Aug 23; 6(2):227-39. PubMed ID: 24080545 [Abstract] [Full Text] [Related]
6. The CgrA and CgrC proteins form a complex that positively regulates cupA fimbrial gene expression in Pseudomonas aeruginosa. McManus HR, Dove SL. J Bacteriol; 2011 Nov 23; 193(22):6152-61. PubMed ID: 21926232 [Abstract] [Full Text] [Related]
7. Crystal structure of the CupB6 adhesive tip from the chaperone-usher family of pili from Pseudomonas aeruginosa. Rasheed M, Garnett J, Pérez-Dorado I, Muhl D, Filloux A, Matthews S. Biochim Biophys Acta; 2016 Nov 23; 1864(11):1500-5. PubMed ID: 27481165 [Abstract] [Full Text] [Related]
8. Biofilm formation in Pseudomonas aeruginosa: fimbrial cup gene clusters are controlled by the transcriptional regulator MvaT. Vallet I, Diggle SP, Stacey RE, Cámara M, Ventre I, Lory S, Lazdunski A, Williams P, Filloux A. J Bacteriol; 2004 May 23; 186(9):2880-90. PubMed ID: 15090530 [Abstract] [Full Text] [Related]
9. Type IV pilus glycosylation mediates resistance of Pseudomonas aeruginosa to opsonic activities of the pulmonary surfactant protein A. Tan RM, Kuang Z, Hao Y, Lee F, Lee T, Lee RJ, Lau GW. Infect Immun; 2015 Apr 23; 83(4):1339-46. PubMed ID: 25605768 [Abstract] [Full Text] [Related]
10. The Pseudomonas aeruginosa PilSR Two-Component System Regulates Both Twitching and Swimming Motilities. Kilmury SLN, Burrows LL. mBio; 2018 Jul 24; 9(4):. PubMed ID: 30042200 [Abstract] [Full Text] [Related]
11. The PprA-PprB two-component system activates CupE, the first non-archetypal Pseudomonas aeruginosa chaperone-usher pathway system assembling fimbriae. Giraud C, Bernard CS, Calderon V, Yang L, Filloux A, Molin S, Fichant G, Bordi C, de Bentzmann S. Environ Microbiol; 2011 Mar 24; 13(3):666-83. PubMed ID: 21091863 [Abstract] [Full Text] [Related]
12. Pseudomonas aeruginosa Regulatory Protein AnvM Controls Pathogenicity in Anaerobic Environments and Impacts Host Defense. Zhang Y, Zhou CM, Pu Q, Wu Q, Tan S, Shao X, Zhang W, Xie Y, Li R, Yu XJ, Wang R, Zhang L, Wu M, Deng X. mBio; 2019 Jul 23; 10(4):. PubMed ID: 31337721 [Abstract] [Full Text] [Related]
13. Bacterial metallothionein, PmtA, a novel stress protein found on the bacterial surface of Pseudomonas aeruginosa and involved in management of oxidative stress and phagocytosis. Maltz-Matyschsyk M, Melchiorre CK, Knecht DA, Lynes MA. mSphere; 2024 May 29; 9(5):e0021024. PubMed ID: 38712943 [Abstract] [Full Text] [Related]
14. Genetic analysis of the regulation of type IV pilus function by the Chp chemosensory system of Pseudomonas aeruginosa. Bertrand JJ, West JT, Engel JN. J Bacteriol; 2010 Feb 29; 192(4):994-1010. PubMed ID: 20008072 [Abstract] [Full Text] [Related]
15. Pseudomonas aeruginosa cupA-encoded fimbriae expression is regulated by a GGDEF and EAL domain-dependent modulation of the intracellular level of cyclic diguanylate. Meissner A, Wild V, Simm R, Rohde M, Erck C, Bredenbruch F, Morr M, Römling U, Häussler S. Environ Microbiol; 2007 Oct 29; 9(10):2475-85. PubMed ID: 17803773 [Abstract] [Full Text] [Related]
16. Local and global regulators linking anaerobiosis to cupA fimbrial gene expression in Pseudomonas aeruginosa. Vallet-Gely I, Sharp JS, Dove SL. J Bacteriol; 2007 Dec 29; 189(23):8667-76. PubMed ID: 17890313 [Abstract] [Full Text] [Related]
17. A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes. Kulasekara HD, Ventre I, Kulasekara BR, Lazdunski A, Filloux A, Lory S. Mol Microbiol; 2005 Jan 29; 55(2):368-80. PubMed ID: 15659157 [Abstract] [Full Text] [Related]
18. Pseudomonas aeruginosa promotes autophagy to suppress macrophage-mediated bacterial eradication. Wu Y, Li D, Wang Y, Chen K, Yang K, Huang X, Zhang Y, Wu M. Int Immunopharmacol; 2016 Sep 29; 38():214-22. PubMed ID: 27295610 [Abstract] [Full Text] [Related]
19. Pseudomonas aeruginosa rugose small-colony variants evade host clearance, are hyper-inflammatory, and persist in multiple host environments. Pestrak MJ, Chaney SB, Eggleston HC, Dellos-Nolan S, Dixit S, Mathew-Steiner SS, Roy S, Parsek MR, Sen CK, Wozniak DJ. PLoS Pathog; 2018 Feb 29; 14(2):e1006842. PubMed ID: 29394295 [Abstract] [Full Text] [Related]