These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


171 related items for PubMed ID: 38773944

  • 1. Near-Unity Photoluminescence Quantum Yield of Core-Only InP Quantum Dots via a Simple Postsynthetic InF3 Treatment.
    Stam M, Almeida G, Ubbink RF, van der Poll LM, Vogel YB, Chen H, Giordano L, Schiettecatte P, Hens Z, Houtepen AJ.
    ACS Nano; 2024 Jun 04; 18(22):14685-14695. PubMed ID: 38773944
    [Abstract] [Full Text] [Related]

  • 2. A Water-Free In Situ HF Treatment for Ultrabright InP Quantum Dots.
    Ubbink RF, Almeida G, Iziyi H, du Fossé I, Verkleij R, Ganapathy S, van Eck ERH, Houtepen AJ.
    Chem Mater; 2022 Nov 22; 34(22):10093-10103. PubMed ID: 36439318
    [Abstract] [Full Text] [Related]

  • 3. Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and Electroluminescence.
    Li Y, Hou X, Dai X, Yao Z, Lv L, Jin Y, Peng X.
    J Am Chem Soc; 2019 Apr 24; 141(16):6448-6452. PubMed ID: 30964282
    [Abstract] [Full Text] [Related]

  • 4. Quasi-Shell-Growth Strategy Achieves Stable and Efficient Green InP Quantum Dot Light-Emitting Diodes.
    Wu Q, Cao F, Wang S, Wang Y, Sun Z, Feng J, Liu Y, Wang L, Cao Q, Li Y, Wei B, Wong WY, Yang X.
    Adv Sci (Weinh); 2022 Jul 24; 9(21):e2200959. PubMed ID: 35618484
    [Abstract] [Full Text] [Related]

  • 5. ZnF2-Assisted Synthesis of Highly Luminescent InP/ZnSe/ZnS Quantum Dots for Efficient and Stable Electroluminescence.
    Li H, Zhang W, Bian Y, Ahn TK, Shen H, Ji B.
    Nano Lett; 2022 May 25; 22(10):4067-4073. PubMed ID: 35536635
    [Abstract] [Full Text] [Related]

  • 6. Guilty as Charged: The Role of Undercoordinated Indium in Electron-Charged Indium Phosphide Quantum Dots.
    Stam M, du Fossé I, Infante I, Houtepen AJ.
    ACS Nano; 2023 Sep 26; 17(18):18576-18583. PubMed ID: 37712414
    [Abstract] [Full Text] [Related]

  • 7. Engineering Brightness Matched Indium Phosphide Quantum Dots.
    Toufanian R, Chern M, Kong VH, Dennis AM.
    Chem Mater; 2021 Mar 23; 33(6):1964-1975. PubMed ID: 34219920
    [Abstract] [Full Text] [Related]

  • 8. Suppressing the Cation Exchange at the Core/Shell Interface of InP Quantum Dots by a Selenium Shielding Layer Enables Efficient Green Light-Emitting Diodes.
    Sun Z, Wu Q, Wang S, Cao F, Wang Y, Li L, Wang H, Kong L, Yan L, Yang X.
    ACS Appl Mater Interfaces; 2022 Apr 06; 14(13):15401-15406. PubMed ID: 35316038
    [Abstract] [Full Text] [Related]

  • 9. Bright InP Quantum Dots by Mid-Synthetic Modification with Zinc Halides.
    Hu HL, Hao H, Ren X, Chen ZY, Liu M, Liu Y, Jiang FL.
    Inorg Chem; 2023 Feb 13; 62(6):2877-2886. PubMed ID: 36723932
    [Abstract] [Full Text] [Related]

  • 10. Full-Spectrum InP-Based Quantum Dots with Near-Unity Photoluminescence Quantum Efficiency.
    Van Avermaet H, Schiettecatte P, Hinz S, Giordano L, Ferrari F, Nayral C, Delpech F, Maultzsch J, Lange H, Hens Z.
    ACS Nano; 2022 Jun 28; 16(6):9701-9712. PubMed ID: 35709384
    [Abstract] [Full Text] [Related]

  • 11. Metal Fluorides Passivate II-VI and III-V Quantum Dots.
    Valleix R, Zhang W, Jordan AJ, Guillemeney L, Castro LG, Zekarias BL, Park SV, Wang O, Owen JS.
    Nano Lett; 2024 May 15; 24(19):5722-5728. PubMed ID: 38712788
    [Abstract] [Full Text] [Related]

  • 12. Photoluminescence color stability of green-emitting InP/ZnS core/shell quantum dots embedded in silica prepared via hydrophobic routes.
    Watanabe T, Iso Y, Isobe T, Sasaki H.
    RSC Adv; 2018 Jul 16; 8(45):25526-25533. PubMed ID: 35539768
    [Abstract] [Full Text] [Related]

  • 13. Synthesis of Colloidal Blue-Emitting InP/ZnS Core/Shell Quantum Dots with the Assistance of Copper Cations.
    Huang F, Bi C, Guo R, Zheng C, Ning J, Tian J.
    J Phys Chem Lett; 2019 Nov 07; 10(21):6720-6726. PubMed ID: 31549508
    [Abstract] [Full Text] [Related]

  • 14. Cadmium-Free and Efficient Type-II InP/ZnO/ZnS Quantum Dots and Their Application for LEDs.
    Eren GO, Sadeghi S, Bahmani Jalali H, Ritter M, Han M, Baylam I, Melikov R, Onal A, Oz F, Sahin M, Ow-Yang CW, Sennaroglu A, Lechner RT, Nizamoglu S.
    ACS Appl Mater Interfaces; 2021 Jul 14; 13(27):32022-32030. PubMed ID: 34196177
    [Abstract] [Full Text] [Related]

  • 15. Water-Soluble Alumina-Coated Indium Phosphide Core-Shell Quantum Dots with Efficient Deep-Red Emission Beyond 700 nm.
    Saha A, Yadav R, Rivaux C, Aldakov D, Reiss P.
    Small; 2024 Nov 14; 20(45):e2404426. PubMed ID: 39058212
    [Abstract] [Full Text] [Related]

  • 16. Extending the Near-Infrared Emission Range of Indium Phosphide Quantum Dots for Multiplexed In Vivo Imaging.
    Saeboe AM, Nikiforov AY, Toufanian R, Kays JC, Chern M, Casas JP, Han K, Piryatinski A, Jones D, Dennis AM.
    Nano Lett; 2021 Apr 14; 21(7):3271-3279. PubMed ID: 33755481
    [Abstract] [Full Text] [Related]

  • 17. Synthesis and Degradation of Cadmium-Free InP and InPZn/ZnS Quantum Dots in Solution.
    Brown RP, Gallagher MJ, Fairbrother DH, Rosenzweig Z.
    Langmuir; 2018 Nov 20; 34(46):13924-13934. PubMed ID: 30351964
    [Abstract] [Full Text] [Related]

  • 18. Near-Infrared Nanophosphors Based on CuInSe2 Quantum Dots with Near-Unity Photoluminescence Quantum Yield for Micro-LEDs Applications.
    Lian W, Tu D, Weng X, Yang K, Li F, Huang D, Zhu H, Xie Z, Chen X.
    Adv Mater; 2024 Mar 20; 36(9):e2311011. PubMed ID: 38041490
    [Abstract] [Full Text] [Related]

  • 19. Bifunctional Metal Oleate as an Alternative Method to Remove Surface Oxide and Passivate Surface Defects of Aminophosphine-Based InP Quantum Dots.
    Chen PR, Hoang MS, Lai KY, Chen HS.
    Nanomaterials (Basel); 2022 Feb 08; 12(3):. PubMed ID: 35159918
    [Abstract] [Full Text] [Related]

  • 20. Synthesis of far-red- and near-infrared-emitting Cu-doped InP/ZnS (core/shell) quantum dots with controlled doping steps and their surface functionalization for bioconjugation.
    Lim M, Lee W, Bang G, Lee WJ, Park Y, Kwon Y, Jung Y, Kim S, Bang J.
    Nanoscale; 2019 May 30; 11(21):10463-10471. PubMed ID: 31112192
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.