These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


213 related items for PubMed ID: 38790018

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Comparison of structure- and ligand-based scoring functions for deep generative models: a GPCR case study.
    Thomas M, Smith RT, O'Boyle NM, de Graaf C, Bender A.
    J Cheminform; 2021 May 13; 13(1):39. PubMed ID: 33985583
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. LOGICS: Learning optimal generative distribution for designing de novo chemical structures.
    Bae B, Bae H, Nam H.
    J Cheminform; 2023 Sep 07; 15(1):77. PubMed ID: 37674239
    [Abstract] [Full Text] [Related]

  • 7. Structure-based de novo drug design using 3D deep generative models.
    Li Y, Pei J, Lai L.
    Chem Sci; 2021 Oct 27; 12(41):13664-13675. PubMed ID: 34760151
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. De Novo Drug Design of Targeted Chemical Libraries Based on Artificial Intelligence and Pair-Based Multiobjective Optimization.
    Domenico A, Nicola G, Daniela T, Fulvio C, Nicola A, Orazio N.
    J Chem Inf Model; 2020 Oct 26; 60(10):4582-4593. PubMed ID: 32845150
    [Abstract] [Full Text] [Related]

  • 10. Pocket Crafter: a 3D generative modeling based workflow for the rapid generation of hit molecules in drug discovery.
    Shen L, Fang J, Liu L, Yang F, Jenkins JL, Kutchukian PS, Wang H.
    J Cheminform; 2024 Mar 21; 16(1):33. PubMed ID: 38515171
    [Abstract] [Full Text] [Related]

  • 11. Strategies for Design of Molecular Structures with a Desired Pharmacophore Using Deep Reinforcement Learning.
    Yoshimori A, Kawasaki E, Kanai C, Tasaka T.
    Chem Pharm Bull (Tokyo); 2020 Mar 21; 68(3):227-233. PubMed ID: 32115529
    [Abstract] [Full Text] [Related]

  • 12. Multi-objective de novo drug design with conditional graph generative model.
    Li Y, Zhang L, Liu Z.
    J Cheminform; 2018 Jul 24; 10(1):33. PubMed ID: 30043127
    [Abstract] [Full Text] [Related]

  • 13. Multiobjective de novo drug design with recurrent neural networks and nondominated sorting.
    Yasonik J.
    J Cheminform; 2020 Feb 18; 12(1):14. PubMed ID: 33430996
    [Abstract] [Full Text] [Related]

  • 14. De novo drug design by iterative multiobjective deep reinforcement learning with graph-based molecular quality assessment.
    Fang Y, Pan X, Shen HB.
    Bioinformatics; 2023 Apr 03; 39(4):. PubMed ID: 36961341
    [Abstract] [Full Text] [Related]

  • 15. Explore drug-like space with deep generative models.
    Wang J, Mao J, Wang M, Le X, Wang Y.
    Methods; 2023 Feb 03; 210():52-59. PubMed ID: 36682423
    [Abstract] [Full Text] [Related]

  • 16. De novo generation of dual-target ligands using adversarial training and reinforcement learning.
    Lu F, Li M, Min X, Li C, Zeng X.
    Brief Bioinform; 2021 Nov 05; 22(6):. PubMed ID: 34410338
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Comprehensive assessment of deep generative architectures for de novo drug design.
    Wang M, Sun H, Wang J, Pang J, Chai X, Xu L, Li H, Cao D, Hou T.
    Brief Bioinform; 2022 Jan 17; 23(1):. PubMed ID: 34929743
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.