These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
176 related items for PubMed ID: 38791410
21. Open questions in ferredoxin-NADP+ reductase catalytic mechanism. Carrillo N, Ceccarelli EA. Eur J Biochem; 2003 May; 270(9):1900-15. PubMed ID: 12709048 [Abstract] [Full Text] [Related]
22. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase. Roitel O, Scrutton NS, Munro AW. Biochemistry; 2003 Sep 16; 42(36):10809-21. PubMed ID: 12962506 [Abstract] [Full Text] [Related]
23. Analysis of the oxidation-reduction potentials of recombinant ferredoxin-NADP+ reductase from spinach chloroplasts. Corrado ME, Aliverti A, Zanetti G, Mayhew SG. Eur J Biochem; 1996 Aug 01; 239(3):662-7. PubMed ID: 8774710 [Abstract] [Full Text] [Related]
24. Functional interactions in cytochrome P450BM3. Evidence that NADP(H) binding controls redox potentials of the flavin cofactors. Murataliev MB, Feyereisen R. Biochemistry; 2000 Oct 17; 39(41):12699-707. PubMed ID: 11027150 [Abstract] [Full Text] [Related]
25. Excited-State Properties of Fully Reduced Flavins in Ferredoxin-NADP+ Oxidoreductase. Zhuang B, Aleksandrov A, Seo D, Vos MH. J Phys Chem Lett; 2023 Feb 02; 14(4):1096-1102. PubMed ID: 36700861 [Abstract] [Full Text] [Related]
26. Structure of the electron transfer complex between ferredoxin and ferredoxin-NADP(+) reductase. Kurisu G, Kusunoki M, Katoh E, Yamazaki T, Teshima K, Onda Y, Kimata-Ariga Y, Hase T. Nat Struct Biol; 2001 Feb 02; 8(2):117-21. PubMed ID: 11175898 [Abstract] [Full Text] [Related]
27. Electron transfer by ferredoxin:NADP+ reductase. Rapid-reaction evidence for participation of a ternary complex. Batie CJ, Kamin H. J Biol Chem; 1984 Oct 10; 259(19):11976-85. PubMed ID: 6480592 [Abstract] [Full Text] [Related]
28. Modulations of the reduction potentials of flavin-based electron bifurcation complexes and semiquinone stabilities are key to control directional electron flow. Sucharitakul J, Buttranon S, Wongnate T, Chowdhury NP, Prongjit M, Buckel W, Chaiyen P. FEBS J; 2021 Feb 10; 288(3):1008-1026. PubMed ID: 32329961 [Abstract] [Full Text] [Related]
29. Proximal FAD histidine residue influences interflavin electron transfer in cytochrome P450 reductase and methionine synthase reductase. Meints CE, Parke SM, Wolthers KR. Arch Biochem Biophys; 2014 Apr 01; 547():18-26. PubMed ID: 24589657 [Abstract] [Full Text] [Related]
30. Determination of the midpoint potential of the FAD and FMN flavin cofactors and of the 3Fe-4S cluster of glutamate synthase. Ravasio S, Curti B, Vanoni MA. Biochemistry; 2001 May 08; 40(18):5533-41. PubMed ID: 11331018 [Abstract] [Full Text] [Related]
31. Structural prototypes for an extended family of flavoprotein reductases: comparison of phthalate dioxygenase reductase with ferredoxin reductase and ferredoxin. Correll CC, Ludwig ML, Bruns CM, Karplus PA. Protein Sci; 1993 Dec 08; 2(12):2112-33. PubMed ID: 8298460 [Abstract] [Full Text] [Related]
32. Molecular mechanism of the redox-dependent interaction between NADH-dependent ferredoxin reductase and Rieske-type [2Fe-2S] ferredoxin. Senda M, Kishigami S, Kimura S, Fukuda M, Ishida T, Senda T. J Mol Biol; 2007 Oct 19; 373(2):382-400. PubMed ID: 17850818 [Abstract] [Full Text] [Related]
33. Interaction of quinones with Arabidopsis thaliana thioredoxin reductase. Bironaite D, Anusevicius Z, Jacquot JP, Cenas N. Biochim Biophys Acta; 1998 Mar 03; 1383(1):82-92. PubMed ID: 9546049 [Abstract] [Full Text] [Related]
34. External loops at the ferredoxin-NADP(+) reductase protein-partner binding cavity contribute to substrates allocation. Sánchez-Azqueta A, Martínez-Júlvez M, Hervás M, Navarro JA, Medina M. Biochim Biophys Acta; 2014 Feb 03; 1837(2):296-305. PubMed ID: 24321506 [Abstract] [Full Text] [Related]
35. Expression and characterization of ferredoxin and flavin adenine dinucleotide binding domains of the reductase component of soluble methane monooxygenase from Methylococcus capsulatus (Bath). Blazyk JL, Lippard SJ. Biochemistry; 2002 Dec 31; 41(52):15780-94. PubMed ID: 12501207 [Abstract] [Full Text] [Related]
37. Redox reactions of the FAD-containing apoptosis-inducing factor (AIF) with quinoidal xenobiotics: a mechanistic study. Misevičienė L, Anusevičius Z, Sarlauskas J, Sevrioukova IF, Cėnas N. Arch Biochem Biophys; 2011 Aug 15; 512(2):183-9. PubMed ID: 21664341 [Abstract] [Full Text] [Related]
38. Effects of chemical modification of Anabaena flavodoxin and ferredoxin-NADP+ reductase on the kinetics of interprotein electron transfer reactions. Medina M, Gomez-Moreno C, Tollin G. Eur J Biochem; 1992 Dec 01; 210(2):577-83. PubMed ID: 1459139 [Abstract] [Full Text] [Related]
39. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA. McLean KJ, Scrutton NS, Munro AW. Biochem J; 2003 Jun 01; 372(Pt 2):317-27. PubMed ID: 12614197 [Abstract] [Full Text] [Related]
40. High-resolution studies of hydride transfer in the ferredoxin:NADP+ reductase superfamily. Kean KM, Carpenter RA, Pandini V, Zanetti G, Hall AR, Faber R, Aliverti A, Karplus PA. FEBS J; 2017 Oct 01; 284(19):3302-3319. PubMed ID: 28783258 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]