These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. 3D Printing of Robust High-Performance Conducting Polymer Hydrogel-Based Electrical Bioadhesive Interface for Soft Bioelectronics. Yu J, Wan R, Tian F, Cao J, Wang W, Liu Q, Yang H, Liu J, Liu X, Lin T, Xu J, Lu B. Small; 2024 May; 20(19):e2308778. PubMed ID: 38063822 [Abstract] [Full Text] [Related]
4. 3D printable and biocompatible PEDOT:PSS-ionic liquid colloids with high conductivity for rapid on-demand fabrication of 3D bioelectronics. Oh B, Baek S, Nam KS, Sung C, Yang C, Lim YS, Ju MS, Kim S, Kim TS, Park SM, Park S, Park S. Nat Commun; 2024 Jul 11; 15(1):5839. PubMed ID: 38992011 [Abstract] [Full Text] [Related]
5. An Inkjet-Printed PEDOT:PSS-Based Stretchable Conductor for Wearable Health Monitoring Device Applications. Lo LW, Zhao J, Wan H, Wang Y, Chakrabartty S, Wang C. ACS Appl Mater Interfaces; 2021 May 12; 13(18):21693-21702. PubMed ID: 33926183 [Abstract] [Full Text] [Related]
6. Intrinsically Stretchable Block Copolymer Based on PEDOT:PSS for Improved Performance in Bioelectronic Applications. Blau R, Chen AX, Polat B, Becerra LL, Runser R, Zamanimeymian B, Choudhary K, Lipomi DJ. ACS Appl Mater Interfaces; 2022 Feb 02; 14(4):4823-4835. PubMed ID: 35072473 [Abstract] [Full Text] [Related]
7. 3D printing of conducting polymers. Yuk H, Lu B, Lin S, Qu K, Xu J, Luo J, Zhao X. Nat Commun; 2020 Mar 30; 11(1):1604. PubMed ID: 32231216 [Abstract] [Full Text] [Related]
8. Highly Sensitive Biosensors Based on All-PEDOT:PSS Organic Electrochemical Transistors with Laser-Induced Micropatterning. Park SY, Son SY, Lee I, Nam H, Ryu B, Park S, Yun C. ACS Appl Mater Interfaces; 2024 Sep 04; 16(35):46664-46676. PubMed ID: 39180554 [Abstract] [Full Text] [Related]
9. 3D printing of cell-laden electroconductive bioinks for tissue engineering applications. Rastin H, Zhang B, Bi J, Hassan K, Tung TT, Losic D. J Mater Chem B; 2020 Jul 15; 8(27):5862-5876. PubMed ID: 32558857 [Abstract] [Full Text] [Related]
10. Highly Conductive PPy-PEDOT:PSS Hybrid Hydrogel with Superior Biocompatibility for Bioelectronics Application. Ren X, Yang M, Yang T, Xu C, Ye Y, Wu X, Zheng X, Wang B, Wan Y, Luo Z. ACS Appl Mater Interfaces; 2021 Jun 02; 13(21):25374-25382. PubMed ID: 34009925 [Abstract] [Full Text] [Related]
11. Polymeric Conductive Adhesive-Based Ultrathin Epidermal Electrodes for Long-Term Monitoring of Electrophysiological Signals. Shin JH, Choi JY, June K, Choi H, Kim TI. Adv Mater; 2024 Jun 02; 36(23):e2313157. PubMed ID: 38421078 [Abstract] [Full Text] [Related]
14. Two-photon polymerization lithography enabling the fabrication of PEDOT:PSS 3D structures for bioelectronic applications. Ruggiero A, Criscuolo V, Grasselli S, Bruno U, Ausilio C, Bovio CL, Bettucci O, Santoro F. Chem Commun (Camb); 2022 Aug 30; 58(70):9790-9793. PubMed ID: 35971788 [Abstract] [Full Text] [Related]
17. Self-healing, stretchable, and highly adhesive hydrogels for epidermal patch electrodes. Zhou X, Rajeev A, Subramanian A, Li Y, Rossetti N, Natale G, Lodygensky GA, Cicoira F. Acta Biomater; 2022 Feb 30; 139():296-306. PubMed ID: 34365040 [Abstract] [Full Text] [Related]
18. Digital selective transformation and patterning of highly conductive hydrogel bioelectronics by laser-induced phase separation. Won D, Kim J, Choi J, Kim H, Han S, Ha I, Bang J, Kim KK, Lee Y, Kim TS, Park JH, Kim CY, Ko SH. Sci Adv; 2022 Jun 10; 8(23):eabo3209. PubMed ID: 35675404 [Abstract] [Full Text] [Related]