These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


124 related items for PubMed ID: 38823751

  • 1. Integration of N- and P- elements in sodium alginate aerogels for efficient flame retardant and thermal insulating properties.
    Zhan H, Liu J, Wang P, Wang C, Wang Z, Chen M, Zhu X, Fu B.
    Int J Biol Macromol; 2024 Jul; 273(Pt 2):132643. PubMed ID: 38823751
    [Abstract] [Full Text] [Related]

  • 2. Guar-based aerogels with oriented lamellar structure and lightweight properties for flame-retardant and thermal insulation.
    Sun J, Guo J, Li Y, Guan F, Zhang Y, Li Z.
    Int J Biol Macromol; 2024 Jan; 256(Pt 1):128318. PubMed ID: 38000610
    [Abstract] [Full Text] [Related]

  • 3. Anisotropic composite aerogel with thermal insulation and flame retardancy from cellulose nanofibers, calcium alginate and boric acid.
    Zhu J, Wang Y, Zhao X, Li N, Guo X, Zhao L, Yin Y.
    Int J Biol Macromol; 2024 May; 267(Pt 1):131450. PubMed ID: 38588838
    [Abstract] [Full Text] [Related]

  • 4. Double cross-linked biomass aerogels with enhanced mechanical strength and flame retardancy for construction thermal insulation.
    Gong L, An X, Ma C, Wang R, Zhou X, Liu C, Li N, Liu Z, Li X.
    Int J Biol Macromol; 2024 Nov; 281(Pt 1):136304. PubMed ID: 39370080
    [Abstract] [Full Text] [Related]

  • 5. Novel aerogels based on supramolecular G-quadruplex assembly with intrinsic flame retardancy and thermal insulation.
    Yang L, Zhang H, Wang C, Jiao Y, Pang X, Xu J, Ma H.
    J Colloid Interface Sci; 2024 Oct 15; 672():618-630. PubMed ID: 38861849
    [Abstract] [Full Text] [Related]

  • 6. Facile Construction of Flame-Resistant and Thermal-Insulating Sodium Alginate Aerogel Incorporating N- and P-Elements.
    Liu J, Zhan H, Song J, Wang C, Zhao T, Fu B.
    Polymers (Basel); 2024 Oct 04; 16(19):. PubMed ID: 39408524
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Thermal Insulation and Flame Retardancy of the Hydroxyapatite Nanorods/Sodium Alginate Composite Aerogel with a Double-Crosslinked Structure.
    Zhu J, Li X, Li D, Jiang C.
    ACS Appl Mater Interfaces; 2022 Oct 12; 14(40):45822-45831. PubMed ID: 36166410
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Magnesium hydroxide coated hollow glass microspheres/chitosan composite aerogels with excellent thermal insulation and flame retardancy.
    Zhu Z, Niu Y, Wang S, Su M, Long Y, Sun H, Liang W, Li A.
    J Colloid Interface Sci; 2022 Apr 15; 612():35-42. PubMed ID: 34974256
    [Abstract] [Full Text] [Related]

  • 11. Konjac glucomannan-based aerogels with excellent thermal stability and flame retardancy for thermal insulation application.
    Deng P, Liu X, Li Y, Zhang YF, Wu K, Jiang F.
    Int J Biol Macromol; 2024 Jan 15; 254(Pt 1):127814. PubMed ID: 37918590
    [Abstract] [Full Text] [Related]

  • 12. Eco-friendly Flame-Retardant Cellulose Nanofibril Aerogels by Incorporating Sodium Bicarbonate.
    Farooq M, Sipponen MH, Seppälä A, Österberg M.
    ACS Appl Mater Interfaces; 2018 Aug 15; 10(32):27407-27415. PubMed ID: 30033716
    [Abstract] [Full Text] [Related]

  • 13. Efficient approach to improving the flame retardancy of poly(vinyl alcohol)/clay aerogels: incorporating piperazine-modified ammonium polyphosphate.
    Wang YT, Liao SF, Shang K, Chen MJ, Huang JQ, Wang YZ, Schiraldi DA.
    ACS Appl Mater Interfaces; 2015 Jan 28; 7(3):1780-6. PubMed ID: 25588129
    [Abstract] [Full Text] [Related]

  • 14. Lightweight, ultrahigh-strength and flame-retardant cellulose aerogel crosslinked with a reactive P/N-rich curdlan derivative.
    Tu J, Mao T, Xie S, Xiao H, Wang P.
    Int J Biol Macromol; 2024 Nov 28; 281(Pt 2):135991. PubMed ID: 39414534
    [Abstract] [Full Text] [Related]

  • 15. Effect of cellulose acetate butyrate microencapsulated ammonium polyphosphate on the flame retardancy, mechanical, electrical, and thermal properties of intumescent flame-retardant ethylene-vinyl acetate copolymer/microencapsulated ammonium polyphosphate/polyamide-6 blends.
    Wang B, Tang Q, Hong N, Song L, Wang L, Shi Y, Hu Y.
    ACS Appl Mater Interfaces; 2011 Sep 28; 3(9):3754-61. PubMed ID: 21859130
    [Abstract] [Full Text] [Related]

  • 16. Harnessing the Flexibility of Lightweight Cellulose Nanofiber Composite Aerogels for Superior Thermal Insulation and Fire Protection.
    Bhardwaj S, Singh S, Dev K, Chhajed M, Maji PK.
    ACS Appl Mater Interfaces; 2024 Apr 10; 16(14):18075-18089. PubMed ID: 38560888
    [Abstract] [Full Text] [Related]

  • 17. Freeze-casting production of thermal insulating and fire-retardant lightweight aerogels based on nanocellulose and boron nitride.
    Liu C, Huang C, Li Y, Liu Y, Bian H, Xiang Z, Wang H, Wang H, Xiao H.
    Int J Biol Macromol; 2023 Dec 01; 252():126370. PubMed ID: 37595711
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Ultralight and Hydrophobic Palygorskite-based Aerogels with Prominent Thermal Insulation and Flame Retardancy.
    Jin H, Zhou X, Xu T, Dai C, Gu Y, Yun S, Hu T, Guan G, Chen J.
    ACS Appl Mater Interfaces; 2020 Mar 11; 12(10):11815-11824. PubMed ID: 32092256
    [Abstract] [Full Text] [Related]

  • 20. Layer-over-Layer Electrostatic Self-Assembly of Bioresourced Compounds in Thermoreversible Polylactide Gels as an Effective Approach to Enhance the Flame Retardancy of Aerogels.
    G Krishnan V, Suresh S, Parukoor Thomas J, Amal Raj RB, Leuteritz A, Gowd EB.
    Biomacromolecules; 2024 Jul 08; 25(7):4581-4590. PubMed ID: 38836359
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.