These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
165 related items for PubMed ID: 38829459
1. Induction of point and structural mutations in engineered yeast Saccharomyces cerevisiae improve carotenoid production. Yamada R, Ando K, Sakaguchi R, Matsumoto T, Ogino H. World J Microbiol Biotechnol; 2024 Jun 03; 40(7):230. PubMed ID: 38829459 [Abstract] [Full Text] [Related]
2. Dual regulation of lipid droplet-triacylglycerol metabolism and ERG9 expression for improved β-carotene production in Saccharomyces cerevisiae. Bu X, Lin JY, Duan CQ, Koffas MAG, Yan GL. Microb Cell Fact; 2022 Jan 04; 21(1):3. PubMed ID: 34983533 [Abstract] [Full Text] [Related]
3. Metabolic engineering of Saccharomyces cerevisiae for production of β-carotene from hydrophobic substrates. Fathi Z, Tramontin LRR, Ebrahimipour G, Borodina I, Darvishi F. FEMS Yeast Res; 2021 Jan 16; 21(1):. PubMed ID: 33332529 [Abstract] [Full Text] [Related]
4. Production of β-carotene in Saccharomyces cerevisiae through altering yeast lipid metabolism. Zhao Y, Zhang Y, Nielsen J, Liu Z. Biotechnol Bioeng; 2021 May 16; 118(5):2043-2052. PubMed ID: 33605428 [Abstract] [Full Text] [Related]
5. High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Verwaal R, Wang J, Meijnen JP, Visser H, Sandmann G, van den Berg JA, van Ooyen AJ. Appl Environ Microbiol; 2007 Jul 16; 73(13):4342-50. PubMed ID: 17496128 [Abstract] [Full Text] [Related]
6. High-level β-carotene production from xylose by engineered Saccharomyces cerevisiae without overexpression of a truncated HMG1 (tHMG1). Sun L, Atkinson CA, Lee YG, Jin YS. Biotechnol Bioeng; 2020 Nov 16; 117(11):3522-3532. PubMed ID: 33616900 [Abstract] [Full Text] [Related]
7. Enhancement of astaxanthin production in Xanthophyllomyces dendrorhous by efficient method for the complete deletion of genes. Yamamoto K, Hara KY, Morita T, Nishimura A, Sasaki D, Ishii J, Ogino C, Kizaki N, Kondo A. Microb Cell Fact; 2016 Sep 13; 15(1):155. PubMed ID: 27624332 [Abstract] [Full Text] [Related]
8. Modulation of gene expression by cocktail δ-integration to improve carotenoid production in Saccharomyces cerevisiae. Yamada R, Yamauchi A, Ando Y, Kumata Y, Ogino H. Bioresour Technol; 2018 Nov 13; 268():616-621. PubMed ID: 30138874 [Abstract] [Full Text] [Related]
9. Development of a metabolic engineering technology to simultaneously suppress the expression of multiple genes in yeast and application in carotenoid production. Yamada R, Yamamoto C, Sakaguchi R, Matsumoto T, Ogino H. World J Microbiol Biotechnol; 2024 Jun 01; 40(7):227. PubMed ID: 38822932 [Abstract] [Full Text] [Related]
10. Dynamic control of ERG9 expression for improved amorpha-4,11-diene production in Saccharomyces cerevisiae. Yuan J, Ching CB. Microb Cell Fact; 2015 Mar 18; 14():38. PubMed ID: 25889168 [Abstract] [Full Text] [Related]
11. Enhancement of farnesyl diphosphate pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccharomyces cerevisiae. Asadollahi MA, Maury J, Schalk M, Clark A, Nielsen J. Biotechnol Bioeng; 2010 May 01; 106(1):86-96. PubMed ID: 20091767 [Abstract] [Full Text] [Related]
12. Efficient production of lycopene in Saccharomyces cerevisiae by enzyme engineering and increasing membrane flexibility and NAPDH production. Hong J, Park SH, Kim S, Kim SW, Hahn JS. Appl Microbiol Biotechnol; 2019 Jan 01; 103(1):211-223. PubMed ID: 30343427 [Abstract] [Full Text] [Related]
13. Primary and Secondary Metabolic Effects of a Key Gene Deletion (ΔYPL062W) in Metabolically Engineered Terpenoid-Producing Saccharomyces cerevisiae. Chen Y, Wang Y, Liu M, Qu J, Yao M, Li B, Ding M, Liu H, Xiao W, Yuan Y. Appl Environ Microbiol; 2019 Apr 01; 85(7):. PubMed ID: 30683746 [Abstract] [Full Text] [Related]
14. Overexpression of ZWF1 and POS5 improves carotenoid biosynthesis in recombinant Saccharomyces cerevisiae. Zhao X, Shi F, Zhan W. Lett Appl Microbiol; 2015 Oct 01; 61(4):354-60. PubMed ID: 26179622 [Abstract] [Full Text] [Related]
15. Enhancing beta-carotene production in Saccharomyces cerevisiae by metabolic engineering. Li Q, Sun Z, Li J, Zhang Y. FEMS Microbiol Lett; 2013 Aug 01; 345(2):94-101. PubMed ID: 23718229 [Abstract] [Full Text] [Related]
16. Construction of a controllable β-carotene biosynthetic pathway by decentralized assembly strategy in Saccharomyces cerevisiae. Xie W, Liu M, Lv X, Lu W, Gu J, Yu H. Biotechnol Bioeng; 2014 Jan 01; 111(1):125-33. PubMed ID: 23860829 [Abstract] [Full Text] [Related]
17. Combinatorial metabolic pathway assembly in the yeast genome with RNA-guided Cas9. EauClaire SF, Zhang J, Rivera CG, Huang LL. J Ind Microbiol Biotechnol; 2016 Jul 01; 43(7):1001-15. PubMed ID: 27138038 [Abstract] [Full Text] [Related]
18. A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae. Peng B, Plan MR, Chrysanthopoulos P, Hodson MP, Nielsen LK, Vickers CE. Metab Eng; 2017 Jan 01; 39():209-219. PubMed ID: 27939849 [Abstract] [Full Text] [Related]
19. Multi-modular metabolic engineering and efflux engineering for enhanced lycopene production in recombinant Saccharomyces cerevisiae. Huang G, Li J, Lin J, Duan C, Yan G. J Ind Microbiol Biotechnol; 2024 Jan 09; 51():. PubMed ID: 38621758 [Abstract] [Full Text] [Related]
20. [Production of β-carotene by metabolically engineered Saccharomyces cerevisiae]. Wang B, Shi M, Wang D, Xu J, Liu Y, Yang H, Dai Z, Zhang X. Sheng Wu Gong Cheng Xue Bao; 2014 Aug 09; 30(8):1204-16. PubMed ID: 25423750 [Abstract] [Full Text] [Related] Page: [Next] [New Search]