These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
114 related items for PubMed ID: 38832648
1. Adaptive evolution of Clostridium thermocellum ATCC 27405 on alternate carbon sources leads to altered fermentation profiles. Daley SR, Kirby S, Sparling R. Can J Microbiol; 2024 Sep 01; 70(9):370-383. PubMed ID: 38832648 [Abstract] [Full Text] [Related]
2. Laboratory Evolution and Reverse Engineering of Clostridium thermocellum for Growth on Glucose and Fructose. Yayo J, Kuil T, Olson DG, Lynd LR, Holwerda EK, van Maris AJA. Appl Environ Microbiol; 2021 Apr 13; 87(9):. PubMed ID: 33608285 [Abstract] [Full Text] [Related]
3. Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum. Papanek B, Biswas R, Rydzak T, Guss AM. Metab Eng; 2015 Nov 13; 32():49-54. PubMed ID: 26369438 [Abstract] [Full Text] [Related]
5. Effect of substrate loading on hydrogen production during anaerobic fermentation by Clostridium thermocellum 27405. Islam R, Cicek N, Sparling R, Levin D. Appl Microbiol Biotechnol; 2006 Sep 13; 72(3):576-83. PubMed ID: 16685495 [Abstract] [Full Text] [Related]
6. Elimination of formate production in Clostridium thermocellum. Rydzak T, Lynd LR, Guss AM. J Ind Microbiol Biotechnol; 2015 Sep 13; 42(9):1263-72. PubMed ID: 26162629 [Abstract] [Full Text] [Related]
7. Formate synthesis by Clostridium thermocellum during anaerobic fermentation. Sparling R, Islam R, Cicek N, Carere C, Chow H, Levin DB. Can J Microbiol; 2006 Jul 13; 52(7):681-8. PubMed ID: 16917525 [Abstract] [Full Text] [Related]
8. Enhanced cellulosic ethanol production via consolidated bioprocessing by Clostridium thermocellum ATCC 31924☆. Singh N, Mathur AS, Gupta RP, Barrow CJ, Tuli D, Puri M. Bioresour Technol; 2018 Feb 13; 250():860-867. PubMed ID: 30001594 [Abstract] [Full Text] [Related]
9. Assessing the impact of substrate-level enzyme regulations limiting ethanol titer in Clostridium thermocellum using a core kinetic model. Foster C, Boorla VS, Dash S, Gopalakrishnan S, Jacobson TB, Olson DG, Amador-Noguez D, Lynd LR, Maranas CD. Metab Eng; 2022 Jan 13; 69():286-301. PubMed ID: 34982997 [Abstract] [Full Text] [Related]
10. Expression of 17 genes in Clostridium thermocellum ATCC 27405 during fermentation of cellulose or cellobiose in continuous culture. Stevenson DM, Weimer PJ. Appl Environ Microbiol; 2005 Aug 13; 71(8):4672-8. PubMed ID: 16085862 [Abstract] [Full Text] [Related]
12. Nitrogen and sulfur requirements for Clostridium thermocellum and Caldicellulosiruptor bescii on cellulosic substrates in minimal nutrient media. Kridelbaugh DM, Nelson J, Engle NL, Tschaplinski TJ, Graham DE. Bioresour Technol; 2013 Feb 13; 130():125-35. PubMed ID: 23306120 [Abstract] [Full Text] [Related]
13. Clostridium thermocellum ATCC27405 transcriptomic, metabolomic and proteomic profiles after ethanol stress. Yang S, Giannone RJ, Dice L, Yang ZK, Engle NL, Tschaplinski TJ, Hettich RL, Brown SD. BMC Genomics; 2012 Jul 23; 13():336. PubMed ID: 22823947 [Abstract] [Full Text] [Related]
14. Elucidating central metabolic redox obstacles hindering ethanol production in Clostridium thermocellum. Thompson RA, Layton DS, Guss AM, Olson DG, Lynd LR, Trinh CT. Metab Eng; 2015 Nov 23; 32():207-219. PubMed ID: 26497628 [Abstract] [Full Text] [Related]
15. Thermodynamic analysis of the pathway for ethanol production from cellobiose in Clostridium thermocellum. Dash S, Olson DG, Joshua Chan SH, Amador-Noguez D, Lynd LR, Maranas CD. Metab Eng; 2019 Sep 23; 55():161-169. PubMed ID: 31220663 [Abstract] [Full Text] [Related]
16. Impact of pretreated Switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. Raman B, Pan C, Hurst GB, Rodriguez M, McKeown CK, Lankford PK, Samatova NF, Mielenz JR. PLoS One; 2009 Sep 23; 4(4):e5271. PubMed ID: 19384422 [Abstract] [Full Text] [Related]
17. Anaerobic microplate assay for direct microbial conversion of switchgrass and Avicel using Clostridium thermocellum. Oguntimein GB, Rodriguez M, Dumitrache A, Shollenberger T, Decker SR, Davison BH, Brown SD. Biotechnol Lett; 2018 Feb 23; 40(2):303-308. PubMed ID: 29124514 [Abstract] [Full Text] [Related]
18. Metabolic adaption of ethanol-tolerant Clostridium thermocellum. Zhu X, Cui J, Feng Y, Fa Y, Zhang J, Cui Q. PLoS One; 2013 Feb 23; 8(7):e70631. PubMed ID: 23936233 [Abstract] [Full Text] [Related]
19. Characterization of Clostridium thermocellum strains with disrupted fermentation end-product pathways. van der Veen D, Lo J, Brown SD, Johnson CM, Tschaplinski TJ, Martin M, Engle NL, van den Berg RA, Argyros AD, Caiazza NC, Guss AM, Lynd LR. J Ind Microbiol Biotechnol; 2013 Jul 23; 40(7):725-34. PubMed ID: 23645383 [Abstract] [Full Text] [Related]
20. Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation. Raman B, McKeown CK, Rodriguez M, Brown SD, Mielenz JR. BMC Microbiol; 2011 Jun 14; 11():134. PubMed ID: 21672225 [Abstract] [Full Text] [Related] Page: [Next] [New Search]