These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
141 related items for PubMed ID: 38834614
21. Formation of fermentation products and extracellular protease during anaerobic growth of Bacillus licheniformis in chemostat and batch-culture. Bulthuis BA, Rommens C, Koningstein GM, Stouthamer AH, van Verseveld HW. Antonie Van Leeuwenhoek; 1991; 60(3-4):355-71. PubMed ID: 1807202 [Abstract] [Full Text] [Related]
22. Expression of a mutated SPT15 gene in Saccharomyces cerevisiae enhances both cell growth and ethanol production in microaerobic batch, fed-batch, and simultaneous saccharification and fermentations. Seong YJ, Park H, Yang J, Kim SJ, Choi W, Kim KH, Park YC. Appl Microbiol Biotechnol; 2017 May; 101(9):3567-3575. PubMed ID: 28168313 [Abstract] [Full Text] [Related]
23. Fermentation of lignocellulosic hydrolyzate using a submerged membrane bioreactor at high dilution rates. Ylitervo P, Doyen W, Taherzadeh MJ. Bioresour Technol; 2014 Jul; 164():64-9. PubMed ID: 24836707 [Abstract] [Full Text] [Related]
24. Thermodynamic analysis of fermentation and anaerobic growth of baker's yeast for ethanol production. Teh KY, Lutz AE. J Biotechnol; 2010 May 17; 147(2):80-7. PubMed ID: 20184925 [Abstract] [Full Text] [Related]
25. Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054. Wahlbom CF, van Zyl WH, Jönsson LJ, Hahn-Hägerdal B, Otero RR. FEMS Yeast Res; 2003 May 17; 3(3):319-26. PubMed ID: 12689639 [Abstract] [Full Text] [Related]
26. The effect of lactic acid on anaerobic carbon or nitrogen limited chemostat cultures of Saccharomyces cerevisiae. Thomsson E, Larsson C. Appl Microbiol Biotechnol; 2006 Jul 17; 71(4):533-42. PubMed ID: 16317544 [Abstract] [Full Text] [Related]
27. Fed-batch cultivation of Saccharomyces cerevisiae in a hyperbaric bioreactor. Belo I, Pinheiro R, Mota M. Biotechnol Prog; 2003 Jul 17; 19(2):665-71. PubMed ID: 12675615 [Abstract] [Full Text] [Related]
28. Quantitative Physiology of Non-Energy-Limited Retentostat Cultures of Saccharomyces cerevisiae at Near-Zero Specific Growth Rates. Liu Y, El Masoudi A, Pronk JT, van Gulik WM. Appl Environ Microbiol; 2019 Oct 15; 85(20):. PubMed ID: 31375494 [Abstract] [Full Text] [Related]
29. Proof-of-concept of a novel micro-bioreactor for fast development of industrial bioprocesses. Reis N, Gonçalves CN, Vicente AA, Teixeira JA. Biotechnol Bioeng; 2006 Nov 05; 95(4):744-53. PubMed ID: 16758459 [Abstract] [Full Text] [Related]
30. Metabolite profiles of the biocontrol yeast Pichia anomala J121 grown under oxygen limitation. Fredlund E, Broberg A, Boysen ME, Kenne L, Schnürer J. Appl Microbiol Biotechnol; 2004 Apr 05; 64(3):403-9. PubMed ID: 14600792 [Abstract] [Full Text] [Related]
31. Static magnetic fields enhancement of Saccharomyces cerevisae ethanolic fermentation. da Motta MA, Muniz JB, Schuler A, Da Motta M. Biotechnol Prog; 2004 Apr 05; 20(1):393-6. PubMed ID: 14763869 [Abstract] [Full Text] [Related]
32. Regulation of alcoholic fermentation in batch and chemostat cultures of Kluyveromyces lactis CBS 2359. Kiers J, Zeeman AM, Luttik M, Thiele C, Castrillo JI, Steensma HY, van Dijken JP, Pronk JT. Yeast; 1998 Mar 30; 14(5):459-69. PubMed ID: 9559553 [Abstract] [Full Text] [Related]
33. Impact of Lignocellulose Pretreatment By-Products on S. cerevisiae Strain Ethanol Red Metabolism during Aerobic and An-aerobic Growth. Kłosowski G, Mikulski D. Molecules; 2021 Feb 04; 26(4):. PubMed ID: 33557207 [Abstract] [Full Text] [Related]
34. Candida albicans--a pre-whole genome duplication yeast--is predominantly aerobic and a poor ethanol producer. Rozpędowska E, Galafassi S, Johansson L, Hagman A, Piškur J, Compagno C. FEMS Yeast Res; 2011 May 04; 11(3):285-91. PubMed ID: 21205163 [Abstract] [Full Text] [Related]
36. Effects of growth conditions on mitochondrial morphology in Saccharomyces cerevisiae. Visser W, van Spronsen EA, Nanninga N, Pronk JT, Gijs Kuenen J, van Dijken JP. Antonie Van Leeuwenhoek; 1995 Apr 04; 67(3):243-53. PubMed ID: 7778893 [Abstract] [Full Text] [Related]
37. A novel process-based model of microbial growth: self-inhibition in Saccharomyces cerevisiae aerobic fed-batch cultures. Mazzoleni S, Landi C, Cartenì F, de Alteriis E, Giannino F, Paciello L, Parascandola P. Microb Cell Fact; 2015 Jul 30; 14():109. PubMed ID: 26223307 [Abstract] [Full Text] [Related]
38. Influence of bioreactor hydraulic characteristics on a Saccharomyces cerevisiae fed-batch culture: hydrodynamic modelling and scale-down investigations. Lejeune A, Delvigne F, Thonart P. J Ind Microbiol Biotechnol; 2010 Mar 30; 37(3):225-36. PubMed ID: 19350298 [Abstract] [Full Text] [Related]
39. Effect of nitrogen limitation on the ergosterol production by fed-batch culture of Saccharomyces cerevisiae. Shang F, Wen S, Wang X, Tan T. J Biotechnol; 2006 Apr 10; 122(3):285-92. PubMed ID: 16488499 [Abstract] [Full Text] [Related]
40. Metabolic fluxes-oriented control of bioreactors: a novel approach to tune micro-aeration and substrate feeding in fermentations. Mesquita TJB, Sargo CR, Fuzer JR, Paredes SAH, Giordano RC, Horta ACL, Zangirolami TC. Microb Cell Fact; 2019 Sep 04; 18(1):150. PubMed ID: 31484570 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]