These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Electrochemical proton gradient in Micrococcus lysodeikticus cells and membrane vesicles. Friedberg I, Kaback HR. J Bacteriol; 1980 May 08; 142(2):651-8. PubMed ID: 7380805 [Abstract] [Full Text] [Related]
23. Energetics of tetracycline efflux system encoded by Tn10 in Escherichia coli. Kaneko M, Yamaguchi A, Sawai T. FEBS Lett; 1985 Dec 02; 193(2):194-8. PubMed ID: 3905438 [Abstract] [Full Text] [Related]
24. Quantitative measurements of the proton-motive force and its relation to steady state lactose accumulation in Escherichia coli. Ahmed S, Booth IR. Biochem J; 1981 Dec 15; 200(3):573-81. PubMed ID: 6282253 [Abstract] [Full Text] [Related]
25. Generation of an electrochemical proton gradient by nitrate respiration in membrane vesicles from anaerobically grown Escherichia coli. Boonstra J, Konings WN. Eur J Biochem; 1977 Sep 15; 78(2):361-8. PubMed ID: 21080 [No Abstract] [Full Text] [Related]
26. [Membrane potential of E. coli recipient cells determines the rate of linear transport of DNA during conjugation]. Berzhinskene IaA, Grinius LL. Biokhimiia; 1989 Sep 15; 54(9):1520-5. PubMed ID: 2686759 [Abstract] [Full Text] [Related]
27. Lactose transport in Escherichia coli: effect of transmembrane potential difference on apparent substrate affinity. Wright JK, Overath P. Biochem Soc Trans; 1980 Jun 15; 8(3):279-81. PubMed ID: 6995200 [No Abstract] [Full Text] [Related]
28. Comparison of the energetics of lactose active transport: artificial versus enzyme-associated energy source. Chen LI, Chen CH. Arch Biochem Biophys; 1986 Dec 15; 251(2):606-15. PubMed ID: 3026249 [Abstract] [Full Text] [Related]
29. Adenosine 5'-triphosphate synthesis driven by a protonmotive force in membrane vesicles of Escherichia coli. Tsuchiya T. J Bacteriol; 1977 Feb 15; 129(2):763-9. PubMed ID: 14110 [Abstract] [Full Text] [Related]
30. Studies of the beta-galactoside transporter in inverted membrane vesicles of Escherichia coli. I. Symmetrical facilitated diffusion and proton gradient-coupled transport. Lancaster JR, Hinkle PC. J Biol Chem; 1977 Nov 10; 252(21):7657-61. PubMed ID: 21183 [Abstract] [Full Text] [Related]
31. Membrane potential and active transport in membrane vesicles from Escherichia coli. Schuldiner S, Kaback HR. Biochemistry; 1975 Dec 16; 14(25):5451-61. PubMed ID: 172125 [No Abstract] [Full Text] [Related]
33. The effect of beta-galactosides on the protonmotive force and growth of Escherichia coli. Ahmed S, Booth IR. J Gen Microbiol; 1983 Aug 16; 129(8):2521-9. PubMed ID: 6313859 [Abstract] [Full Text] [Related]
34. Effect of inhibitors on the substrate-dependent quenching of 9-aminoacridine fluorescence in inside-out membrane vesicles of Escherichia coli. Singh AP, Bragg PD. Eur J Biochem; 1976 Aug 01; 67(1):177-86. PubMed ID: 9275 [Abstract] [Full Text] [Related]
39. ATP-dependent proton translocation and quenching of 9-aminoacridine fluorescence in inside-out membrane vesicles of a cytochrome-deficient mutant of Escherichia coli, Singh AP, Bragg PD. Biochim Biophys Acta; 1977 Feb 04; 464(3):562-70. PubMed ID: 65180 [Abstract] [Full Text] [Related]
40. Mechanism of glutamate transport in Escherichia coli B. 2. Kinetics of glutamate transport driven by artificially imposed proton and sodium ion gradients across the cytoplasmic membrane. Fujimura T, Yamato I, Anraku Y. Biochemistry; 1983 Apr 12; 22(8):1959-65. PubMed ID: 6133551 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]