These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
296 related items for PubMed ID: 38843
1. Effect of membrane potential and internal pH on active sodium-potassium transport and on ATP content in high-potassium sheep erythrocytes. Zade-Oppen AM, Schooler JM, Cook P, Tosteson DC. Biochim Biophys Acta; 1979 Aug 07; 555(2):285-98. PubMed ID: 38843 [Abstract] [Full Text] [Related]
2. Studies on the lithium transport across the red cell membrane. II. Characterization of ouabain-sensitive and ouabain-insensitive Li+ transport. Effects of bicarbonate and dipyridamole. Duhm J, Becker BF. Pflugers Arch; 1977 Jan 17; 367(3):211-9. PubMed ID: 13345 [Abstract] [Full Text] [Related]
3. A change in the internal affinity of LK goat red-cell sodium pumps induced by high pH. Ellory JC, Maher P. Biochim Biophys Acta; 1977 Nov 15; 471(1):111-7. PubMed ID: 21689 [Abstract] [Full Text] [Related]
6. Stimulation and inhibition by ATP and orthophosphate of the potassium-potassium exchange in resealed red cell ghosts. Eisner DA, Richards DE. J Physiol; 1983 Feb 15; 335():495-506. PubMed ID: 6875890 [Abstract] [Full Text] [Related]
7. Na+-K+ pump activities of high- and low-potassium sheep red cells with internal magnesium and calcium altered by A23187. Fujise H, Lauf PK. J Physiol; 1988 Nov 15; 405():605-14. PubMed ID: 3151371 [Abstract] [Full Text] [Related]
8. Potassium: potassium exchange catalysed by the sodium pump in human red cells. Simons TJ. J Physiol; 1974 Feb 15; 237(1):123-55. PubMed ID: 4822584 [Abstract] [Full Text] [Related]
9. Phosphate from the phosphointermediate (EP) of the human red blood cell Na/K pump is coeffluxed with Na, in the absence of external K. Marín R, Hoffman JF. J Gen Physiol; 1994 Jul 15; 104(1):1-32. PubMed ID: 7964591 [Abstract] [Full Text] [Related]
10. Non-pumped sodium fluxes in human red blood cells. Evidence for facilitated diffusion. Beaugé L. Biochim Biophys Acta; 1975 Aug 05; 401(1):95-108. PubMed ID: 1148290 [Abstract] [Full Text] [Related]
12. Active sodium and potassium transport in high potassium and low potassium sheep red cells. Hoffman PG, Tosteson DC. J Gen Physiol; 1971 Oct 05; 58(4):438-66. PubMed ID: 5112660 [Abstract] [Full Text] [Related]
16. The effect of membrane cholesterol on the sodium pump in red blood cells. Claret M, Garay R, Giraud F. J Physiol; 1978 Jan 05; 274():247-63. PubMed ID: 624995 [Abstract] [Full Text] [Related]
17. Effects of pH, potential, chloride and furosemide on passive Na+ and K+ effluxes from human red blood cells. Zade-Oppen AM, Adragna NC, Tosteson DC. J Membr Biol; 1988 Aug 05; 103(3):217-25. PubMed ID: 3184174 [Abstract] [Full Text] [Related]
19. Studies on lithium transport across the red cell membrane. V. On the nature of the Na+-dependent Li+ countertransport system of mammalian erythrocytes. Duhm J, Becker BF. J Membr Biol; 1979 Dec 31; 51(3-4):263-86. PubMed ID: 43898 [Abstract] [Full Text] [Related]
20. Membrane-bound ATP fuels the Na/K pump. Studies on membrane-bound glycolytic enzymes on inside-out vesicles from human red cell membranes. Mercer RW, Dunham PB. J Gen Physiol; 1981 Nov 31; 78(5):547-68. PubMed ID: 6273495 [Abstract] [Full Text] [Related] Page: [Next] [New Search]