These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
183 related items for PubMed ID: 38843827
1. Mechanisms of actin filament severing and elongation by formins. Palmer NJ, Barrie KR, Dominguez R. Nature; 2024 Aug; 632(8024):437-442. PubMed ID: 38843827 [Abstract] [Full Text] [Related]
3. INF2 Is a WASP homology 2 motif-containing formin that severs actin filaments and accelerates both polymerization and depolymerization. Chhabra ES, Higgs HN. J Biol Chem; 2006 Sep 08; 281(36):26754-67. PubMed ID: 16818491 [Abstract] [Full Text] [Related]
4. Molecular mechanism of actin filament elongation by formins. Oosterheert W, Boiero Sanders M, Funk J, Prumbaum D, Raunser S, Bieling P. Science; 2024 Apr 12; 384(6692):eadn9560. PubMed ID: 38603491 [Abstract] [Full Text] [Related]
5. Assembly and turnover of short actin filaments by the formin INF2 and profilin. Gurel PS, A M, Guo B, Shu R, Mierke DF, Higgs HN. J Biol Chem; 2015 Sep 11; 290(37):22494-506. PubMed ID: 26124273 [Abstract] [Full Text] [Related]
6. Profilin's Affinity for Formin Regulates the Availability of Filament Ends for Actin Monomer Binding. Zweifel ME, Courtemanche N. J Mol Biol; 2020 Dec 04; 432(24):166688. PubMed ID: 33289668 [Abstract] [Full Text] [Related]
7. Mutations to the formin homology 2 domain of INF2 protein have unexpected effects on actin polymerization and severing. Ramabhadran V, Gurel PS, Higgs HN. J Biol Chem; 2012 Oct 05; 287(41):34234-45. PubMed ID: 22879592 [Abstract] [Full Text] [Related]
8. Insertional assembly of actin filament barbed ends in association with formins produces piconewton forces. Kovar DR, Pollard TD. Proc Natl Acad Sci U S A; 2004 Oct 12; 101(41):14725-30. PubMed ID: 15377785 [Abstract] [Full Text] [Related]
9. The role of the FH1 domain and profilin in formin-mediated actin-filament elongation and nucleation. Paul AS, Pollard TD. Curr Biol; 2008 Jan 08; 18(1):9-19. PubMed ID: 18160294 [Abstract] [Full Text] [Related]
10. Review of the mechanism of processive actin filament elongation by formins. Paul AS, Pollard TD. Cell Motil Cytoskeleton; 2009 Aug 08; 66(8):606-17. PubMed ID: 19459187 [Abstract] [Full Text] [Related]
11. Competition for delivery of profilin-actin to barbed ends limits the rate of formin-mediated actin filament elongation. Zweifel ME, Courtemanche N. J Biol Chem; 2020 Apr 03; 295(14):4513-4525. PubMed ID: 32075907 [Abstract] [Full Text] [Related]
12. How ATP hydrolysis controls filament assembly from profilin-actin: implication for formin processivity. Romero S, Didry D, Larquet E, Boisset N, Pantaloni D, Carlier MF. J Biol Chem; 2007 Mar 16; 282(11):8435-45. PubMed ID: 17210567 [Abstract] [Full Text] [Related]
13. Analysis of the function of Spire in actin assembly and its synergy with formin and profilin. Bosch M, Le KH, Bugyi B, Correia JJ, Renault L, Carlier MF. Mol Cell; 2007 Nov 30; 28(4):555-68. PubMed ID: 18042452 [Abstract] [Full Text] [Related]
14. Nanostructured self-assembly of inverted formin 2 (INF2) and F-actin-INF2 complexes revealed by atomic force microscopy. Sharma S, Grintsevich EE, Woo J, Gurel PS, Higgs HN, Reisler E, Gimzewski JK. Langmuir; 2014 Jul 01; 30(25):7533-9. PubMed ID: 24915113 [Abstract] [Full Text] [Related]
15. Understanding the role of the G-actin-binding domain of Ena/VASP in actin assembly. Chereau D, Dominguez R. J Struct Biol; 2006 Aug 01; 155(2):195-201. PubMed ID: 16684607 [Abstract] [Full Text] [Related]