These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


123 related items for PubMed ID: 38856089

  • 1. Valorization of Corn Straw for Production of Glucose by Two-Step Depolymerization.
    Ma Y, Li M, Lu T, Yang X, Zhou L.
    Chemistry; 2024 Aug 12; 30(45):e202400800. PubMed ID: 38856089
    [Abstract] [Full Text] [Related]

  • 2. The correlation between cellulose allomorphs (I and II) and conversion after removal of hemicellulose and lignin of lignocellulose.
    Song Y, Zhang J, Zhang X, Tan T.
    Bioresour Technol; 2015 Oct 12; 193():164-70. PubMed ID: 26133473
    [Abstract] [Full Text] [Related]

  • 3. Enhancing the enzymatic hydrolysis of corn stover by an integrated wet-milling and alkali pretreatment.
    He X, Miao Y, Jiang X, Xu Z, Ouyang P.
    Appl Biochem Biotechnol; 2010 Apr 12; 160(8):2449-57. PubMed ID: 19669940
    [Abstract] [Full Text] [Related]

  • 4. Lime pretreatment and enzymatic hydrolysis of corn stover.
    Kim S, Holtzapple MT.
    Bioresour Technol; 2005 Dec 12; 96(18):1994-2006. PubMed ID: 16112487
    [Abstract] [Full Text] [Related]

  • 5. Partial flow of compressed-hot water through corn stover to enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose.
    Liu C, Wyman CE.
    Bioresour Technol; 2005 Dec 12; 96(18):1978-85. PubMed ID: 16112485
    [Abstract] [Full Text] [Related]

  • 6. Chemical Pretreatment-Independent Saccharifications of Xylan and Cellulose of Rice Straw by Bacterial Weak Lignin-Binding Xylanolytic and Cellulolytic Enzymes.
    Teeravivattanakit T, Baramee S, Phitsuwan P, Sornyotha S, Waeonukul R, Pason P, Tachaapaikoon C, Poomputsa K, Kosugi A, Sakka K, Ratanakhanokchai K.
    Appl Environ Microbiol; 2017 Nov 15; 83(22):. PubMed ID: 28864653
    [Abstract] [Full Text] [Related]

  • 7. Steam pretreatment of agricultural residues facilitates hemicellulose recovery while enhancing enzyme accessibility to cellulose.
    Chandra RP, Arantes V, Saddler J.
    Bioresour Technol; 2015 Jun 15; 185():302-7. PubMed ID: 25780906
    [Abstract] [Full Text] [Related]

  • 8. Characterization of mechanical pulverization/phosphoric acid pretreatment of corn stover for enzymatic hydrolysis.
    Yu H, Xiao W, Han L, Huang G.
    Bioresour Technol; 2019 Jun 15; 282():69-74. PubMed ID: 30851576
    [Abstract] [Full Text] [Related]

  • 9. [Degradation of lignocellulose in the corn straw by Bacillus amyloliquefaciens MN-8].
    Li HY, Li SN, Wang SX, Wang Q, Xue YY, Zhu BC.
    Ying Yong Sheng Tai Xue Bao; 2015 May 15; 26(5):1404-10. PubMed ID: 26571658
    [Abstract] [Full Text] [Related]

  • 10. Biomass, lignocellulolytic enzyme production and lignocellulose degradation patterns by Auricularia auricula during solid state fermentation of corn stalk residues under different pretreatments.
    Lu X, Li F, Zhou X, Hu J, Liu P.
    Food Chem; 2022 Aug 01; 384():132622. PubMed ID: 35413777
    [Abstract] [Full Text] [Related]

  • 11. Impact of fluid velocity on hot water only pretreatment of corn stover in a flowthrough reactor.
    Liu C, Wyman CE.
    Appl Biochem Biotechnol; 2004 Aug 01; 113-116():977-87. PubMed ID: 15054246
    [Abstract] [Full Text] [Related]

  • 12. A fractionation strategy of cellulose, hemicellulose, and lignin from wheat straw via the biphasic pretreatment for biomass valorization.
    Zhan Q, Lin Q, Wu Y, Liu Y, Wang X, Ren J.
    Bioresour Technol; 2023 May 01; 376():128887. PubMed ID: 36925080
    [Abstract] [Full Text] [Related]

  • 13. Valorization of Miscanthus × giganteus by γ-Valerolactone/H2O/FeCl3 system toward efficient conversion of cellulose and hemicelluloses.
    Ding D, Hu J, Hui L, Liu Z, Shao L.
    Carbohydr Polym; 2021 Oct 15; 270():118388. PubMed ID: 34364629
    [Abstract] [Full Text] [Related]

  • 14. Transformation of lignocellulose to starch-like carbohydrates by organic acid-catalyzed pretreatment and biological detoxification.
    Zhang B, Khushik FA, Zhan B, Bao J.
    Biotechnol Bioeng; 2021 Oct 15; 118(10):4105-4118. PubMed ID: 34255378
    [Abstract] [Full Text] [Related]

  • 15. Hydrothermal treatment of wheat straw at pilot plant scale using a three-step reactor system aiming at high hemicellulose recovery, high cellulose digestibility and low lignin hydrolysis.
    Thomsen MH, Thygesen A, Thomsen AB.
    Bioresour Technol; 2008 Jul 15; 99(10):4221-8. PubMed ID: 17936621
    [Abstract] [Full Text] [Related]

  • 16. Mechanochemical-assisted hydrolysis of pretreated rice straw into glucose and xylose in water by weakly acidic solid catalyst.
    Qi X, Yan L, Shen F, Qiu M.
    Bioresour Technol; 2019 Feb 15; 273():687-691. PubMed ID: 30448067
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Enhancement of In Situ Enzymatic Saccharification of Corn Stover by a Stepwise Sodium Hydroxide and Organic Acid Pretreatment.
    Qing Q, Guo Q, Zhou L, He Y, Wang L, Zhang Y.
    Appl Biochem Biotechnol; 2017 Jan 15; 181(1):350-364. PubMed ID: 27544773
    [Abstract] [Full Text] [Related]

  • 19. Energy efficient process for valorization of corn cob as a source for nanocrystalline cellulose and hemicellulose production.
    Louis ACF, Venkatachalam S.
    Int J Biol Macromol; 2020 Nov 15; 163():260-269. PubMed ID: 32621928
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.