These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


184 related items for PubMed ID: 38861179

  • 21. Isolation and Functional Characterization of New Terpene Synthase Genes from Traditional Edible Plants.
    Hattan JI, Shindo K, Sasaki T, Misawa N.
    J Oleo Sci; 2018; 67(10):1235-1246. PubMed ID: 30305556
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Floral volatile alleles can contribute to pollinator-mediated reproductive isolation in monkeyflowers (Mimulus).
    Byers KJ, Vela JP, Peng F, Riffell JA, Bradshaw HD.
    Plant J; 2014 Dec; 80(6):1031-42. PubMed ID: 25319242
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Two terpene synthases are responsible for the major sesquiterpenes emitted from the flowers of kiwifruit (Actinidia deliciosa).
    Nieuwenhuizen NJ, Wang MY, Matich AJ, Green SA, Chen X, Yauk YK, Beuning LL, Nagegowda DA, Dudareva N, Atkinson RG.
    J Exp Bot; 2009 Dec; 60(11):3203-19. PubMed ID: 19516075
    [Abstract] [Full Text] [Related]

  • 27. Integrated metabolome and transcriptome analysis of Magnolia champaca identifies biosynthetic pathways for floral volatile organic compounds.
    Dhandapani S, Jin J, Sridhar V, Sarojam R, Chua NH, Jang IC.
    BMC Genomics; 2017 Jun 14; 18(1):463. PubMed ID: 28615048
    [Abstract] [Full Text] [Related]

  • 28. Identification and functional analysis of terpene synthases revealing the secrets of aroma formation in Chrysanthemum aromaticum.
    Zhong J, Chen Y, Shi H, Zhou T, Wang C, Guo Z, Liang Y, Zhang Q, Sun M.
    Int J Biol Macromol; 2024 Nov 14; 279(Pt 3):135377. PubMed ID: 39244131
    [Abstract] [Full Text] [Related]

  • 29. Identification of Volatile Compounds and Terpene Synthase (TPS) Genes Reveals ZcTPS02 Involved in β-Ocimene Biosynthesis in Zephyranthes candida.
    Wei G, Xu Y, Xu M, Shi X, Wang J, Feng L.
    Genes (Basel); 2024 Jan 30; 15(2):. PubMed ID: 38397175
    [Abstract] [Full Text] [Related]

  • 30. Identification and characterization of a key LcTPS in the biosynthesis of volatile monoterpenes and sesquiterpenes in Litchi fruit.
    Fu L, Chen Q, Li Y, Li Y, Pang X, Zhang Z, Fang F.
    Physiol Plant; 2024 Jan 30; 176(5):e14559. PubMed ID: 39377160
    [Abstract] [Full Text] [Related]

  • 31. Transcriptome profiling provides new insights into the formation of floral scent in Hedychium coronarium.
    Yue Y, Yu R, Fan Y.
    BMC Genomics; 2015 Jun 19; 16(1):470. PubMed ID: 26084652
    [Abstract] [Full Text] [Related]

  • 32. Cloning and characterization of a monoterpene synthase gene from flowers of Camelina sativa.
    Borghi M, Xie DY.
    Planta; 2018 Feb 19; 247(2):443-457. PubMed ID: 29075872
    [Abstract] [Full Text] [Related]

  • 33. Genome-Wide Identification and Expression Profile of TPS Gene Family in Dendrobium officinale and the Role of DoTPS10 in Linalool Biosynthesis.
    Yu Z, Zhao C, Zhang G, Teixeira da Silva JA, Duan J.
    Int J Mol Sci; 2020 Jul 30; 21(15):. PubMed ID: 32751445
    [Abstract] [Full Text] [Related]

  • 34. Kinetic studies and homology modeling of a dual-substrate linalool/nerolidol synthase from Plectranthus amboinicus.
    Ashaari NS, Ab Rahim MH, Sabri S, Lai KS, Song AA, Abdul Rahim R, Ong Abdullah J.
    Sci Rep; 2021 Aug 24; 11(1):17094. PubMed ID: 34429465
    [Abstract] [Full Text] [Related]

  • 35. Implementation of CsLIS/NES in linalool biosynthesis involves transcript splicing regulation in Camellia sinensis.
    Liu GF, Liu JJ, He ZR, Wang FM, Yang H, Yan YF, Gao MJ, Gruber MY, Wan XC, Wei S.
    Plant Cell Environ; 2018 Jan 24; 41(1):176-186. PubMed ID: 28963730
    [Abstract] [Full Text] [Related]

  • 36. Expression of terpene synthase genes associated with the formation of volatiles in different organs of Vitis vinifera.
    Matarese F, Cuzzola A, Scalabrelli G, D'Onofrio C.
    Phytochemistry; 2014 Sep 24; 105():12-24. PubMed ID: 25014656
    [Abstract] [Full Text] [Related]

  • 37. Elucidation of the essential oil biosynthetic pathways in Cinnamomum burmannii through identification of six terpene synthases.
    Ma Q, Ma R, Su P, Jin B, Guo J, Tang J, Chen T, Zeng W, Lai C, Ling F, Yao Y, Cui G, Huang L.
    Plant Sci; 2022 Apr 24; 317():111203. PubMed ID: 35193750
    [Abstract] [Full Text] [Related]

  • 38. Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species.
    Aharoni A, Giri AP, Verstappen FW, Bertea CM, Sevenier R, Sun Z, Jongsma MA, Schwab W, Bouwmeester HJ.
    Plant Cell; 2004 Nov 24; 16(11):3110-31. PubMed ID: 15522848
    [Abstract] [Full Text] [Related]

  • 39. LiNAC100 contributes to linalool biosynthesis by directly regulating LiLiS in Lilium 'Siberia'.
    Liu X, Yan W, Liu S, Wu J, Leng P, Hu Z.
    Planta; 2024 Feb 23; 259(4):73. PubMed ID: 38393405
    [Abstract] [Full Text] [Related]

  • 40. Terpenoid metabolism in wild-type and transgenic Arabidopsis plants.
    Aharoni A, Giri AP, Deuerlein S, Griepink F, de Kogel WJ, Verstappen FW, Verhoeven HA, Jongsma MA, Schwab W, Bouwmeester HJ.
    Plant Cell; 2003 Dec 23; 15(12):2866-84. PubMed ID: 14630967
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.