These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


127 related items for PubMed ID: 38877870

  • 1. Resting membrane potential and intracellular [Na+] at rest, during fatigue and during recovery in rat soleus muscle fibres in situ.
    Lindinger MI, Cairns SP, Sejersted OM.
    J Physiol; 2024 Jul; 602(14):3469-3487. PubMed ID: 38877870
    [Abstract] [Full Text] [Related]

  • 2. The potassium-glycogen interaction on force and excitability in mouse skeletal muscle: implications for fatigue.
    Cairns SP, Renaud JM.
    J Physiol; 2023 Dec; 601(24):5669-5687. PubMed ID: 37934587
    [Abstract] [Full Text] [Related]

  • 3. Relation between extracellular [K+], membrane potential and contraction in rat soleus muscle: modulation by the Na+-K+ pump.
    Cairns SP, Flatman JA, Clausen T.
    Pflugers Arch; 1995 Oct; 430(6):909-15. PubMed ID: 8594543
    [Abstract] [Full Text] [Related]

  • 4. The peak force-resting membrane potential relationships of mouse fast- and slow-twitch muscle.
    Cairns SP, Leader JP, Higgins A, Renaud JM.
    Am J Physiol Cell Physiol; 2022 Jun 01; 322(6):C1151-C1165. PubMed ID: 35385328
    [Abstract] [Full Text] [Related]

  • 5. Relations between excitability and contractility in rat soleus muscle: role of the Na+-K+ pump and Na+/K+ gradients.
    Overgaard K, Nielsen OB, Flatman JA, Clausen T.
    J Physiol; 1999 Jul 01; 518(Pt 1):215-25. PubMed ID: 10373703
    [Abstract] [Full Text] [Related]

  • 6. Effects of calcitonin gene-related peptide on rat soleus muscle excitability: mechanisms and physiological significance.
    Macdonald WA, Nielsen OB, Clausen T.
    Am J Physiol Regul Integr Comp Physiol; 2008 Oct 01; 295(4):R1214-23. PubMed ID: 18650319
    [Abstract] [Full Text] [Related]

  • 7. Effects of fatiguing stimulation on intracellular Na+ and K+ in frog skeletal muscle.
    Balog EM, Fitts RH.
    J Appl Physiol (1985); 1996 Aug 01; 81(2):679-85. PubMed ID: 8872634
    [Abstract] [Full Text] [Related]

  • 8. Exacerbated potassium-induced paralysis of mouse soleus muscle at 37°C vis-à-vis 25°C: implications for fatigue. K+ -induced paralysis at 37°C.
    Cairns SP, Leader JP, Loiselle DS.
    Pflugers Arch; 2011 Apr 01; 461(4):469-79. PubMed ID: 21337119
    [Abstract] [Full Text] [Related]

  • 9. Effects of reduced electrochemical Na+ gradient on contractility in skeletal muscle: role of the Na+-K+ pump.
    Overgaard K, Nielsen OB, Clausen T.
    Pflugers Arch; 1997 Aug 01; 434(4):457-65. PubMed ID: 9211813
    [Abstract] [Full Text] [Related]

  • 10. Evidence that the Na+-K+ leak/pump ratio contributes to the difference in endurance between fast- and slow-twitch muscles.
    Clausen T, Overgaard K, Nielsen OB.
    Acta Physiol Scand; 2004 Feb 01; 180(2):209-16. PubMed ID: 14738479
    [Abstract] [Full Text] [Related]

  • 11. Excitability of the T-tubular system in rat skeletal muscle: roles of K+ and Na+ gradients and Na+-K+ pump activity.
    Nielsen OB, Ørtenblad N, Lamb GD, Stephenson DG.
    J Physiol; 2004 May 15; 557(Pt 1):133-46. PubMed ID: 15034125
    [Abstract] [Full Text] [Related]

  • 12. Role of Na,K pumps in restoring contractility following loss of cell membrane integrity in rat skeletal muscle.
    Clausen T, Gissel H.
    Acta Physiol Scand; 2005 Mar 15; 183(3):263-71. PubMed ID: 15743386
    [Abstract] [Full Text] [Related]

  • 13. Extracellular Ca2+-induced force restoration in K+-depressed skeletal muscle of the mouse involves an elevation of [K+]i: implications for fatigue.
    Cairns SP, Leader JP, Loiselle DS, Higgins A, Lin W, Renaud JM.
    J Appl Physiol (1985); 2015 Mar 15; 118(6):662-74. PubMed ID: 25571990
    [Abstract] [Full Text] [Related]

  • 14. Muscle K+, Na+, and Cl disturbances and Na+-K+ pump inactivation: implications for fatigue.
    McKenna MJ, Bangsbo J, Renaud JM.
    J Appl Physiol (1985); 2008 Jan 15; 104(1):288-95. PubMed ID: 17962569
    [Abstract] [Full Text] [Related]

  • 15. Na+-K+ pump stimulation restores carbacholine-induced loss of excitability and contractility in rat skeletal muscle.
    Macdonald WA, Nielsen OB, Clausen T.
    J Physiol; 2005 Mar 01; 563(Pt 2):459-69. PubMed ID: 15649983
    [Abstract] [Full Text] [Related]

  • 16. Activity-induced recovery of excitability in K(+)-depressed rat soleus muscle.
    Overgaard K, Nielsen OB.
    Am J Physiol Regul Integr Comp Physiol; 2001 Jan 01; 280(1):R48-55. PubMed ID: 11124133
    [Abstract] [Full Text] [Related]

  • 17. In isolated skeletal muscle, excitation may increase extracellular K+ 10-fold; how can contractility be maintained?
    Clausen T.
    Exp Physiol; 2011 Mar 01; 96(3):356-68. PubMed ID: 21123362
    [Abstract] [Full Text] [Related]

  • 18. Effects of electrical stimulation and insulin on Na+-K+-ATPase ([3H]ouabain binding) in rat skeletal muscle.
    McKenna MJ, Gissel H, Clausen T.
    J Physiol; 2003 Mar 01; 547(Pt 2):567-80. PubMed ID: 12562912
    [Abstract] [Full Text] [Related]

  • 19. Fatigue-induced change in T-system excitability and its major cause in rat fast-twitch skeletal muscle in vivo.
    Watanabe D, Wada M.
    J Physiol; 2020 Nov 01; 598(22):5195-5211. PubMed ID: 32833287
    [Abstract] [Full Text] [Related]

  • 20. Na+,K+-pump stimulation improves contractility in isolated muscles of mice with hyperkalemic periodic paralysis.
    Clausen T, Nielsen OB, Clausen JD, Pedersen TH, Hayward LJ.
    J Gen Physiol; 2011 Jul 01; 138(1):117-30. PubMed ID: 21708955
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.